GME: Improving Universal Multimodal Retrieval by Multimodal LLMs
- URL: http://arxiv.org/abs/2412.16855v1
- Date: Sun, 22 Dec 2024 04:40:24 GMT
- Title: GME: Improving Universal Multimodal Retrieval by Multimodal LLMs
- Authors: Xin Zhang, Yanzhao Zhang, Wen Xie, Mingxin Li, Ziqi Dai, Dingkun Long, Pengjun Xie, Meishan Zhang, Wenjie Li, Min Zhang,
- Abstract summary: Universal Multimodal Retrieval (UMR) aims to enable search across various modalities using a unified model.
Previous work has attempted to adopt multimodal large language models (MLLMs) to realize UMR using only text data.
- Score: 43.457928045291915
- License:
- Abstract: Universal Multimodal Retrieval (UMR) aims to enable search across various modalities using a unified model, where queries and candidates can consist of pure text, images, or a combination of both. Previous work has attempted to adopt multimodal large language models (MLLMs) to realize UMR using only text data. However, our preliminary experiments demonstrate that more diverse multimodal training data can further unlock the potential of MLLMs. Despite its effectiveness, the existing multimodal training data is highly imbalanced in terms of modality, which motivates us to develop a training data synthesis pipeline and construct a large-scale, high-quality fused-modal training dataset. Based on the synthetic training data, we develop the General Multimodal Embedder (GME), an MLLM-based dense retriever designed for UMR. Furthermore, we construct a comprehensive UMR Benchmark (UMRB) to evaluate the effectiveness of our approach. Experimental results show that our method achieves state-of-the-art performance among existing UMR methods. Last, we provide in-depth analyses of model scaling, training strategies, and perform ablation studies on both the model and synthetic data.
Related papers
- Multi-modal Retrieval Augmented Multi-modal Generation: Datasets, Evaluation Metrics and Strong Baselines [64.61315565501681]
Multi-modal Retrieval Augmented Multi-modal Generation (M$2$RAG) is a novel task that enables foundation models to process multi-modal web content.
Despite its potential impact, M$2$RAG remains understudied, lacking comprehensive analysis and high-quality data resources.
arXiv Detail & Related papers (2024-11-25T13:20:19Z) - FedMLLM: Federated Fine-tuning MLLM on Multimodal Heterogeneity Data [64.50893177169996]
Fine-tuning Multimodal Large Language Models (MLLMs) with Federated Learning (FL) allows for expanding the training data scope by including private data sources.
We introduce a benchmark for evaluating various downstream tasks in the federated fine-tuning of MLLMs within multimodal heterogeneous scenarios.
We develop a general FedMLLM framework that integrates four representative FL methods alongside two modality-agnostic strategies.
arXiv Detail & Related papers (2024-11-22T04:09:23Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - Federated Multi-Task Learning on Non-IID Data Silos: An Experimental Study [17.555311732095483]
The FMTL approach consolidates the benefits of Federated Learning (FL) and Multi-Task Learning (MTL)
This paper introduces a novel framework, FMTL-Bench, for systematic evaluation of the FMTL paradigm.
arXiv Detail & Related papers (2024-02-20T10:13:44Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - How to Sense the World: Leveraging Hierarchy in Multimodal Perception
for Robust Reinforcement Learning Agents [9.840104333194663]
We argue for hierarchy in the design of representation models and contribute with a novel multimodal representation model, MUSE.
MUSE is the sensory representation model of deep reinforcement learning agents provided with multimodal observations in Atari games.
We perform a comparative study over different designs of reinforcement learning agents, showing that MUSE allows agents to perform tasks under incomplete perceptual experience with minimal performance loss.
arXiv Detail & Related papers (2021-10-07T16:35:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.