Out-of-Distribution Detection with Prototypical Outlier Proxy
- URL: http://arxiv.org/abs/2412.16884v1
- Date: Sun, 22 Dec 2024 06:32:20 GMT
- Title: Out-of-Distribution Detection with Prototypical Outlier Proxy
- Authors: Mingrong Gong, Chaoqi Chen, Qingqiang Sun, Yue Wang, Hui Huang,
- Abstract summary: Well-trained deep models tend to perform over-confidence on unseen test data.
Recent research attempts to leverage real or synthetic outliers to mitigate the issue.
We propose a simple yet effective framework, Prototypical Outlier Proxy (POP)
- Score: 17.130831264648997
- License:
- Abstract: Out-of-distribution (OOD) detection is a crucial task for deploying deep learning models in the wild. One of the major challenges is that well-trained deep models tend to perform over-confidence on unseen test data. Recent research attempts to leverage real or synthetic outliers to mitigate the issue, which may significantly increase computational costs and be biased toward specific outlier characteristics. In this paper, we propose a simple yet effective framework, Prototypical Outlier Proxy (POP), which introduces virtual OOD prototypes to reshape the decision boundaries between ID and OOD data. Specifically, we transform the learnable classifier into a fixed one and augment it with a set of prototypical weight vectors. Then, we introduce a hierarchical similarity boundary loss to impose adaptive penalties depending on the degree of misclassification. Extensive experiments across various benchmarks demonstrate the effectiveness of POP. Notably, POP achieves average FPR95 reductions of 7.70%, 6.30%, and 5.42% over the second-best methods on CIFAR-10, CIFAR-100, and ImageNet-200, respectively. Moreover, compared to the recent method NPOS, which relies on outlier synthesis, POP trains 7.2X faster and performs inference 19.5X faster. The source code is available at: https://github.com/gmr523/pop.
Related papers
- DisCoPatch: Batch Statistics Are All You Need For OOD Detection, But Only If You Can Trust Them [7.0477485974331895]
Out-of-distribution (OOD) detection holds significant importance across many applications.
We introduce DisCoPatch, an unsupervised Adversarial Variational Autoencoder framework that harnesses this mechanism.
DisCoPatch achieves state-of-the-art results in public OOD detection benchmarks.
arXiv Detail & Related papers (2025-01-14T10:49:26Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - Advancing Adversarial Robustness Through Adversarial Logit Update [10.041289551532804]
Adversarial training and adversarial purification are among the most widely recognized defense strategies.
We propose a new principle, namely Adversarial Logit Update (ALU), to infer adversarial sample's labels.
Our solution achieves superior performance compared to state-of-the-art methods against a wide range of adversarial attacks.
arXiv Detail & Related papers (2023-08-29T07:13:31Z) - Predicted Embedding Power Regression for Large-Scale Out-of-Distribution
Detection [77.1596426383046]
We develop a novel approach that calculates the probability of the predicted class label based on label distributions learned during the training process.
Our method performs better than current state-of-the-art methods with only a negligible increase in compute cost.
arXiv Detail & Related papers (2023-03-07T18:28:39Z) - Boosting Out-of-Distribution Detection with Multiple Pre-trained Models [41.66566916581451]
Post hoc detection utilizing pre-trained models has shown promising performance and can be scaled to large-scale problems.
We propose a detection enhancement method by ensembling multiple detection decisions derived from a zoo of pre-trained models.
Our method substantially improves the relative performance by 65.40% and 26.96% on the CIFAR10 and ImageNet benchmarks.
arXiv Detail & Related papers (2022-12-24T12:11:38Z) - Diffusion Denoising Process for Perceptron Bias in Out-of-distribution
Detection [67.49587673594276]
We introduce a new perceptron bias assumption that suggests discriminator models are more sensitive to certain features of the input, leading to the overconfidence problem.
We demonstrate that the diffusion denoising process (DDP) of DMs serves as a novel form of asymmetric, which is well-suited to enhance the input and mitigate the overconfidence problem.
Our experiments on CIFAR10, CIFAR100, and ImageNet show that our method outperforms SOTA approaches.
arXiv Detail & Related papers (2022-11-21T08:45:08Z) - Two Heads are Better than One: Robust Learning Meets Multi-branch Models [14.72099568017039]
We propose Branch Orthogonality adveRsarial Training (BORT) to obtain state-of-the-art performance with solely the original dataset for adversarial training.
We evaluate our approach on CIFAR-10, CIFAR-100, and SVHN against ell_infty norm-bounded perturbations of size epsilon = 8/255, respectively.
arXiv Detail & Related papers (2022-08-17T05:42:59Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - VOS: Learning What You Don't Know by Virtual Outlier Synthesis [23.67449949146439]
Out-of-distribution (OOD) detection has received much attention lately due to its importance in the safe deployment of neural networks.
Previous approaches rely on real outlier datasets for model regularization.
We present VOS, a novel framework for OOD detection by adaptively synthesizing virtual outliers.
arXiv Detail & Related papers (2022-02-02T18:43:01Z) - Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier [68.38233199030908]
Long-tail recognition tackles the natural non-uniformly distributed data in realworld scenarios.
While moderns perform well on populated classes, its performance degrades significantly on tail classes.
Deep-RTC is proposed as a new solution to the long-tail problem, combining realism with hierarchical predictions.
arXiv Detail & Related papers (2020-07-20T05:57:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.