A Lightweight and Robust Framework for Real-Time Colorectal Polyp Detection Using LOF-Based Preprocessing and YOLO-v11n
- URL: http://arxiv.org/abs/2507.10864v2
- Date: Mon, 21 Jul 2025 05:37:42 GMT
- Title: A Lightweight and Robust Framework for Real-Time Colorectal Polyp Detection Using LOF-Based Preprocessing and YOLO-v11n
- Authors: Saadat Behzadi, Danial Sharifrazi, Bita Mesbahzadeh, Javad Hassannataj Joloudari, Roohallah Alizadehsani,
- Abstract summary: This study introduces a new, lightweight, and efficient framework for polyp detection.<n>It combines the Local Outlier Factor algorithm for filtering noisy data with the YOLO-v11n deep learning model.<n>Compared to previous YOLO-based methods, our model demonstrates enhanced accuracy and efficiency.
- Score: 0.3495246564946556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objectives: Timely and accurate detection of colorectal polyps plays a crucial role in diagnosing and preventing colorectal cancer, a major cause of mortality worldwide. This study introduces a new, lightweight, and efficient framework for polyp detection that combines the Local Outlier Factor (LOF) algorithm for filtering noisy data with the YOLO-v11n deep learning model. Study design: An experimental study leveraging deep learning and outlier removal techniques across multiple public datasets. Methods: The proposed approach was tested on five diverse and publicly available datasets: CVC-ColonDB, CVC-ClinicDB, Kvasir-SEG, ETIS, and EndoScene. Since these datasets originally lacked bounding box annotations, we converted their segmentation masks into suitable detection labels. To enhance the robustness and generalizability of our model, we apply 5-fold cross-validation and remove anomalous samples using the LOF method configured with 30 neighbors and a contamination ratio of 5%. Cleaned data are then fed into YOLO-v11n, a fast and resource-efficient object detection architecture optimized for real-time applications. We train the model using a combination of modern augmentation strategies to improve detection accuracy under diverse conditions. Results: Our approach significantly improves polyp localization performance, achieving a precision of 95.83%, recall of 91.85%, F1-score of 93.48%, mAP@0.5 of 96.48%, and mAP@0.5:0.95 of 77.75%. Compared to previous YOLO-based methods, our model demonstrates enhanced accuracy and efficiency. Conclusions: These results suggest that the proposed method is well-suited for real-time colonoscopy support in clinical settings. Overall, the study underscores how crucial data preprocessing and model efficiency are when designing effective AI systems for medical imaging.
Related papers
- Advancing Tabular Stroke Modelling Through a Novel Hybrid Architecture and Feature-Selection Synergy [0.9999629695552196]
The present work develops and validates a data-driven and interpretable machine-learning framework designed to predict strokes.<n>Ten routinely gathered demographic, lifestyle, and clinical variables were sourced from a public cohort of 4,981 records.<n>The proposed model achieved an accuracy rate of 97.2% and an F1-score of 97.15%, indicating a significant enhancement compared to the leading individual model.
arXiv Detail & Related papers (2025-05-18T21:46:45Z) - A Comparison of Deep Learning Methods for Cell Detection in Digital Cytology [1.607370483729741]
We evaluate the performance of several Deep Learning (DL) methods for cell detection in Papanicolaou-stained cytological Whole Slide Images (WSIs)<n>We examine recentoff-the-shelf algorithms as well as custom-designed detectors, applying them to two datasets.<n>Results show that centroid-based methods, particularly the Improved Fully Convolutional Regression Network (IFCRN) method, outperform segmentation-based methods in terms of both detection accuracy and computational efficiency.
arXiv Detail & Related papers (2025-04-09T15:08:12Z) - Detection of Disease on Nasal Breath Sound by New Lightweight Architecture: Using COVID-19 as An Example [4.618578603062536]
Infectious diseases, particularly COVID-19, continue to be a significant global health issue.<n>This study aims to develop a novel, lightweight deep neural network for efficient, accurate, and cost-effective detection of COVID-19 using a nasal breathing audio data collected via smartphones.
arXiv Detail & Related papers (2025-04-01T12:41:53Z) - Efficient Brain Tumor Classification with Lightweight CNN Architecture: A Novel Approach [0.0]
Brain tumor classification using MRI images is critical in medical diagnostics, where early and accurate detection significantly impacts patient outcomes.<n>Recent advancements in deep learning (DL) have shown promise, but many models struggle with balancing accuracy and computational efficiency.<n>We propose a novel model architecture integrating separable convolutions and squeeze and excitation (SE) blocks, designed to enhance feature extraction while maintaining computational efficiency.
arXiv Detail & Related papers (2025-02-01T21:06:42Z) - A Review and Implementation of Object Detection Models and Optimizations for Real-time Medical Mask Detection during the COVID-19 Pandemic [0.0]
This work assesses the most fundamental object detection models on the Common Objects in Context (COCO) dataset.
We select a highly efficient model called YOLOv5 to train on the topical and unexplored dataset of human faces with medical masks.
We propose an optimized model based on YOLOv5 using transfer learning for the detection of correctly and incorrectly worn medical masks.
arXiv Detail & Related papers (2024-05-28T17:27:24Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Exploring the Effectiveness of Dataset Synthesis: An application of
Apple Detection in Orchards [68.95806641664713]
We explore the usability of Stable Diffusion 2.1-base for generating synthetic datasets of apple trees for object detection.
We train a YOLOv5m object detection model to predict apples in a real-world apple detection dataset.
Results demonstrate that the model trained on generated data is slightly underperforming compared to a baseline model trained on real-world images.
arXiv Detail & Related papers (2023-06-20T09:46:01Z) - Fake It Till You Make It: Near-Distribution Novelty Detection by
Score-Based Generative Models [54.182955830194445]
existing models either fail or face a dramatic drop under the so-called near-distribution" setting.
We propose to exploit a score-based generative model to produce synthetic near-distribution anomalous data.
Our method improves the near-distribution novelty detection by 6% and passes the state-of-the-art by 1% to 5% across nine novelty detection benchmarks.
arXiv Detail & Related papers (2022-05-28T02:02:53Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Chest x-ray automated triage: a semiologic approach designed for
clinical implementation, exploiting different types of labels through a
combination of four Deep Learning architectures [83.48996461770017]
This work presents a Deep Learning method based on the late fusion of different convolutional architectures.
We built four training datasets combining images from public chest x-ray datasets and our institutional archive.
We trained four different Deep Learning architectures and combined their outputs with a late fusion strategy, obtaining a unified tool.
arXiv Detail & Related papers (2020-12-23T14:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.