Lightweight Design and Optimization methods for DCNNs: Progress and Futures
- URL: http://arxiv.org/abs/2412.16886v1
- Date: Sun, 22 Dec 2024 06:47:01 GMT
- Title: Lightweight Design and Optimization methods for DCNNs: Progress and Futures
- Authors: Hanhua Long, Wenbin Bi, Jian Sun,
- Abstract summary: Deep Convolutional Neural Networks (DCNNs) have demonstrated superior performance in computer vision tasks.
High computational costs and large network architectures severely limit the widespread application of DCNNs on resource-constrained hardware platforms.
This paper reviews lightweight design strategies for DCNNs and examines recent research progress in both lightweight architectural design and model compression.
- Score: 40.96453902709292
- License:
- Abstract: Lightweight design, as a key approach to mitigate disparity between computational requirements of deep learning models and hardware performance, plays a pivotal role in advancing application of deep learning technologies on mobile and embedded devices, alongside rapid development of smart home, telemedicine, and autonomous driving. With its outstanding feature extracting capabilities, Deep Convolutional Neural Networks (DCNNs) have demonstrated superior performance in computer vision tasks. However, high computational costs and large network architectures severely limit the widespread application of DCNNs on resource-constrained hardware platforms such as smartphones, robots, and IoT devices. This paper reviews lightweight design strategies for DCNNs and examines recent research progress in both lightweight architectural design and model compression. Additionally, this paper discusses current limitations in this field of research and propose prospects for future directions, aiming to provide valuable guidance and reflection for lightweight design philosophy on deep neural networks in the field of computer vision.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Optical Computing for Deep Neural Network Acceleration: Foundations, Recent Developments, and Emerging Directions [3.943289808718775]
We discuss the fundamentals and state-of-the-art developments in optical computing, with an emphasis on deep neural networks (DNNs)
Various promising approaches are described for engineering optical devices, enhancing optical circuits, and designing architectures that can adapt optical computing to a variety of DNN workloads.
Novel techniques for hardware/software co-design that can intelligently tune and map DNN models to improve performance and energy-efficiency on optical computing platforms across high performance and resource constrained embedded, edge, and IoT platforms are also discussed.
arXiv Detail & Related papers (2024-07-30T20:50:30Z) - NNsight and NDIF: Democratizing Access to Open-Weight Foundation Model Internals [58.83169560132308]
We introduce NNsight and NDIF, technologies that work in tandem to enable scientific study of very large neural networks.
NNsight is an open-source system that extends PyTorch to introduce deferred remote execution.
NDIF is a scalable inference service that executes NNsight requests, allowing users to share GPU resources and pretrained models.
arXiv Detail & Related papers (2024-07-18T17:59:01Z) - Free-Space Optical Spiking Neural Network [0.0]
We introduce the Free-space Optical deep Spiking Convolutional Neural Network (OSCNN)
This novel approach draws inspiration from computational models of the human eye.
Our results demonstrate promising performance with minimal latency and power consumption compared to their electronic ONN counterparts.
arXiv Detail & Related papers (2023-11-08T09:41:14Z) - Dynamic Early Exiting Predictive Coding Neural Networks [3.542013483233133]
With the urge for smaller and more accurate devices, Deep Learning models became too heavy to deploy.
We propose a shallow bidirectional network based on predictive coding theory and dynamic early exiting for halting further computations.
We achieve comparable accuracy to VGG-16 in image classification on CIFAR-10 with fewer parameters and less computational complexity.
arXiv Detail & Related papers (2023-09-05T08:00:01Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
Deep learning models have reached or even exceeded human-level performance in a range of visual perception tasks.
Deep learning models usually demand significant computational resources, leading to impractical power consumption, latency, or carbon emissions in real-world scenarios.
New research focus is computationally efficient deep learning, which strives to achieve satisfactory performance while minimizing the computational cost during inference.
arXiv Detail & Related papers (2023-08-27T03:55:28Z) - Fast GraspNeXt: A Fast Self-Attention Neural Network Architecture for
Multi-task Learning in Computer Vision Tasks for Robotic Grasping on the Edge [80.88063189896718]
High architectural and computational complexity can result in poor suitability for deployment on embedded devices.
Fast GraspNeXt is a fast self-attention neural network architecture tailored for embedded multi-task learning in computer vision tasks for robotic grasping.
arXiv Detail & Related papers (2023-04-21T18:07:14Z) - Enable Deep Learning on Mobile Devices: Methods, Systems, and
Applications [46.97774949613859]
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI)
However, their superior performance comes at the considerable cost of computational complexity.
This paper provides an overview of efficient deep learning methods, systems and applications.
arXiv Detail & Related papers (2022-04-25T16:52:48Z) - Hardware and Software Optimizations for Accelerating Deep Neural
Networks: Survey of Current Trends, Challenges, and the Road Ahead [14.313423044185583]
This paper introduces the key properties of two brain-inspired models like Deep Neural Network (DNN), and then analyzes techniques to produce efficient and high-performance designs.
A single inference of a DL model may require billions of multiply-and-accumulated operations, making the DL extremely compute- and energy-hungry.
arXiv Detail & Related papers (2020-12-21T10:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.