Integrating Random Effects in Variational Autoencoders for Dimensionality Reduction of Correlated Data
- URL: http://arxiv.org/abs/2412.16899v2
- Date: Tue, 24 Dec 2024 07:43:17 GMT
- Title: Integrating Random Effects in Variational Autoencoders for Dimensionality Reduction of Correlated Data
- Authors: Giora Simchoni, Saharon Rosset,
- Abstract summary: LMMVAE is a novel model which separates the classic VAE latent model into fixed and random parts.
It is shown to improve squared reconstruction error and negative likelihood loss significantly on unseen data.
- Score: 9.990687944474738
- License:
- Abstract: Variational Autoencoders (VAE) are widely used for dimensionality reduction of large-scale tabular and image datasets, under the assumption of independence between data observations. In practice, however, datasets are often correlated, with typical sources of correlation including spatial, temporal and clustering structures. Inspired by the literature on linear mixed models (LMM), we propose LMMVAE -- a novel model which separates the classic VAE latent model into fixed and random parts. While the fixed part assumes the latent variables are independent as usual, the random part consists of latent variables which are correlated between similar clusters in the data such as nearby locations or successive measurements. The classic VAE architecture and loss are modified accordingly. LMMVAE is shown to improve squared reconstruction error and negative likelihood loss significantly on unseen data, with simulated as well as real datasets from various applications and correlation scenarios. It also shows improvement in the performance of downstream tasks such as supervised classification on the learned representations.
Related papers
- Tabular data generation with tensor contraction layers and transformers [0.35998666903987897]
We investigate the potential of using embedding representations on data generation, utilizing tensor contraction layers and transformers.
Our empirical study, conducted across multiple datasets from the OpenML CC18 suite, compares models over density estimation and Machine Learning efficiency metrics.
The main takeaway from our results is that leveraging embedding representations with the help of tensor contraction layers improves density estimation metrics, albeit maintaining competitive performance in terms of machine learning efficiency.
arXiv Detail & Related papers (2024-12-06T19:34:13Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Predictive variational autoencoder for learning robust representations
of time-series data [0.0]
We propose a VAE architecture that predicts the next point in time and show that it mitigates the learning of spurious features.
We show that together these two constraints on VAEs to be smooth over time produce robust latent representations and faithfully recover latent factors on synthetic datasets.
arXiv Detail & Related papers (2023-12-12T02:06:50Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
Deep generative models have demonstrated successful applications in learning non-linear data distributions through a number of latent variables.
The nonlinearity of the generator implies that the latent space shows an unsatisfactory projection of the data space, which results in poor representation learning.
We show that geodesics and accurate computation can substantially improve the performance of deep generative models.
arXiv Detail & Related papers (2023-04-03T13:13:19Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
Federated learning aims to train models across different clients without the sharing of data for privacy considerations.
We study how data heterogeneity affects the representations of the globally aggregated models.
We propose sc FedDecorr, a novel method that can effectively mitigate dimensional collapse in federated learning.
arXiv Detail & Related papers (2022-10-01T09:04:17Z) - RENs: Relevance Encoding Networks [0.0]
This paper proposes relevance encoding networks (RENs): a novel probabilistic VAE-based framework that uses the automatic relevance determination (ARD) prior in the latent space to learn the data-specific bottleneck dimensionality.
We show that the proposed model learns the relevant latent bottleneck dimensionality without compromising the representation and generation quality of the samples.
arXiv Detail & Related papers (2022-05-25T21:53:48Z) - Accuracy on the Line: On the Strong Correlation Between
Out-of-Distribution and In-Distribution Generalization [89.73665256847858]
We show that out-of-distribution performance is strongly correlated with in-distribution performance for a wide range of models and distribution shifts.
Specifically, we demonstrate strong correlations between in-distribution and out-of-distribution performance on variants of CIFAR-10 & ImageNet.
We also investigate cases where the correlation is weaker, for instance some synthetic distribution shifts from CIFAR-10-C and the tissue classification dataset Camelyon17-WILDS.
arXiv Detail & Related papers (2021-07-09T19:48:23Z) - OR-Net: Pointwise Relational Inference for Data Completion under Partial
Observation [51.083573770706636]
This work uses relational inference to fill in the incomplete data.
We propose Omni-Relational Network (OR-Net) to model the pointwise relativity in two aspects.
arXiv Detail & Related papers (2021-05-02T06:05:54Z) - Variational Selective Autoencoder: Learning from Partially-Observed
Heterogeneous Data [45.23338389559936]
We propose the variational selective autoencoder (VSAE) to learn representations from partially-observed heterogeneous data.
VSAE learns the latent dependencies in heterogeneous data by modeling the joint distribution of observed data, unobserved data, and the imputation mask.
It results in a unified model for various downstream tasks including data generation and imputation.
arXiv Detail & Related papers (2021-02-25T04:39:13Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - Longitudinal Variational Autoencoder [1.4680035572775534]
A common approach to analyse high-dimensional data that contains missing values is to learn a low-dimensional representation using variational autoencoders (VAEs)
Standard VAEs assume that the learnt representations are i.i.d., and fail to capture the correlations between the data samples.
We propose the Longitudinal VAE (L-VAE), that uses a multi-output additive Gaussian process (GP) prior to extend the VAE's capability to learn structured low-dimensional representations.
Our approach can simultaneously accommodate both time-varying shared and random effects, produce structured low-dimensional representations
arXiv Detail & Related papers (2020-06-17T10:30:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.