論文の概要: Self-Corrected Flow Distillation for Consistent One-Step and Few-Step Text-to-Image Generation
- arxiv url: http://arxiv.org/abs/2412.16906v1
- Date: Sun, 22 Dec 2024 07:48:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:58:24.011247
- Title: Self-Corrected Flow Distillation for Consistent One-Step and Few-Step Text-to-Image Generation
- Title(参考訳): 一段・二段のテキスト・ツー・イメージ生成のための自己補正型フロー蒸留法
- Authors: Quan Dao, Hao Phung, Trung Dao, Dimitris Metaxas, Anh Tran,
- Abstract要約: フローマッチングは、生成モデルをトレーニングするための有望なフレームワークとして登場した。
本稿では, 整合性モデルと対向学習を統合した自己補正型流動蒸留法を提案する。
この研究は、数ステップと1ステップのサンプリングで一貫した生成品質を達成するための先駆者である。
- 参考スコア(独自算出の注目度): 3.8959351616076745
- License:
- Abstract: Flow matching has emerged as a promising framework for training generative models, demonstrating impressive empirical performance while offering relative ease of training compared to diffusion-based models. However, this method still requires numerous function evaluations in the sampling process. To address these limitations, we introduce a self-corrected flow distillation method that effectively integrates consistency models and adversarial training within the flow-matching framework. This work is a pioneer in achieving consistent generation quality in both few-step and one-step sampling. Our extensive experiments validate the effectiveness of our method, yielding superior results both quantitatively and qualitatively on CelebA-HQ and zero-shot benchmarks on the COCO dataset. Our implementation is released at https://github.com/VinAIResearch/SCFlow
- Abstract(参考訳): フローマッチングは、生成モデルをトレーニングするための有望なフレームワークとして現れており、拡散ベースモデルと比較して比較的容易なトレーニングを提供しながら、印象的な経験的パフォーマンスを誇示している。
しかし,本手法はサンプリング過程において多くの機能評価を必要とする。
これらの制約に対処するために,フローマッチングフレームワーク内での整合性モデルと対角トレーニングを効果的に統合する自己補正型フロー蒸留法を導入する。
この研究は、数ステップと1ステップのサンプリングで一貫した生成品質を達成するための先駆者である。
提案手法の有効性を検証し,CelebA-HQおよびCOCOデータセットのゼロショットベンチマークにおいて,定量的および定性的に優れた結果を得た。
私たちの実装はhttps://github.com/VinAIResearch/SCFlowで公開されています。
関連論文リスト
- Consistency Flow Matching: Defining Straight Flows with Velocity Consistency [97.28511135503176]
本稿では,速度場の自己整合性を明示する新しいFM法であるConsistency Flow Matching(Consistency-FM)を紹介する。
予備実験により、一貫性FMは、一貫性モデルよりも4.4倍速く収束することにより、トレーニング効率を著しく向上することが示された。
論文 参考訳(メタデータ) (2024-07-02T16:15:37Z) - Improving Consistency Models with Generator-Induced Flows [16.049476783301724]
一貫性モデルは、ニューラルネットワークの単一前方通過におけるスコアベース拡散の多段階サンプリングを模倣する。
それらは、一貫性の蒸留と一貫性のトレーニングの2つの方法を学ぶことができる。
本稿では,現在訓練されているモデルから得られた雑音データを対応する出力へ転送する新しい流れを提案する。
論文 参考訳(メタデータ) (2024-06-13T20:22:38Z) - Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows [53.31856123113228]
本稿では,言語認識フロー (ours) を提案する。
本手法は, 標準確率流モデルの再構成に基づく。
実験およびアブレーション実験により,本手法は多くのNLPタスクに対して汎用的,効果的,有益であることが示されている。
論文 参考訳(メタデータ) (2024-03-25T17:58:22Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
我々は,クラスごとのサンプル数に関する事前知識を必要とせず,シンプルなロジットアプローチ(LORT)を開発した。
提案手法は,CIFAR100-LT, ImageNet-LT, iNaturalist 2018など,様々な不均衡データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2024-03-01T03:27:08Z) - One-Step Diffusion Distillation via Deep Equilibrium Models [64.11782639697883]
本稿では,拡散モデルを初期雑音から得られた画像に直接蒸留する簡易かつ効果的な方法を提案する。
本手法は,拡散モデルからノイズ/イメージペアのみによる完全オフライントレーニングを可能にする。
GET は FID スコアの点で 5 倍の ViT と一致するので,DEC アーキテクチャがこの能力に不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-12T07:28:40Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
その結果,ガイドフローは条件付き画像生成やゼロショット音声合成におけるサンプル品質を著しく向上させることがわかった。
特に、我々は、拡散モデルと比較して、オフライン強化学習設定axスピードアップにおいて、まず、計画生成にフローモデルを適用する。
論文 参考訳(メタデータ) (2023-11-22T15:07:59Z) - Flow Matching in Latent Space [2.9330609943398525]
フローマッチングは、印象的な経験的パフォーマンスを示す生成モデルをトレーニングするフレームワークである。
本稿では,事前学習されたオートエンコーダの潜時空間にフローマッチングを適用し,計算効率を向上させることを提案する。
我々の研究は、条件生成タスクのフローマッチングへの様々な条件の統合における先駆的な貢献である。
論文 参考訳(メタデータ) (2023-07-17T17:57:56Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - Enhancing Text Generation with Cooperative Training [23.971227375706327]
ほとんどの一般的な方法は、別々に生成的および差別的なモデルを訓練し、互いに変化に適応できなかった。
本稿では,識別器とジェネレータをクローズドループで協調的に学習するテキスト分野におけるテキスト自己一貫性学習フレームワークを提案する。
我々のフレームワークは、モード崩壊や非収束といったトレーニングの不安定さを軽減することができる。
論文 参考訳(メタデータ) (2023-03-16T04:21:19Z) - Modeling Score Distributions and Continuous Covariates: A Bayesian
Approach [8.772459063453285]
連続共変量に対するマッチングと非マッチスコア分布の生成モデルを構築した。
混合モデルを用いて任意の分布と局所基底関数をキャプチャする。
提案手法の精度と有効性を示す3つの実験を行った。
論文 参考訳(メタデータ) (2020-09-21T02:41:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。