論文の概要: Detect Changes like Humans: Incorporating Semantic Priors for Improved Change Detection
- arxiv url: http://arxiv.org/abs/2412.16918v2
- Date: Tue, 09 Sep 2025 07:25:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:26.730875
- Title: Detect Changes like Humans: Incorporating Semantic Priors for Improved Change Detection
- Title(参考訳): 人間のような変化を検知する: 変化検出を改善するためにセマンティックな優先順位を組み込む
- Authors: Yuhang Gan, Wenjie Xuan, Zhiming Luo, Lei Fang, Zengmao Wang, Juhua Liu, Bo Du,
- Abstract要約: 本稿では,視覚基盤モデルからのセマンティックな先入観を取り入れ,変化を検出する能力の向上について検討する。
人間の視覚パラダイムにインスパイアされた新しいデュアルストリーム特徴デコーダは、意味認識特徴と差認識特徴を組み合わせることで変化を区別するために導出される。
- 参考スコア(独自算出の注目度): 52.62459671461816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When given two similar images, humans identify their differences by comparing the appearance (e.g., color, texture) with the help of semantics (e.g., objects, relations). However, mainstream binary change detection models adopt a supervised training paradigm, where the annotated binary change map is the main constraint. Thus, such methods primarily emphasize difference-aware features between bi-temporal images, and the semantic understanding of changed landscapes is undermined, resulting in limited accuracy in the face of noise and illumination variations. To this end, this paper explores incorporating semantic priors from visual foundation models to improve the ability to detect changes. Firstly, we propose a Semantic-Aware Change Detection network (SA-CDNet), which transfers the knowledge of visual foundation models (i.e., FastSAM) to change detection. Inspired by the human visual paradigm, a novel dual-stream feature decoder is derived to distinguish changes by combining semantic-aware features and difference-aware features. Secondly, we explore a single-temporal pre-training strategy for better adaptation of visual foundation models. With pseudo-change data constructed from single-temporal segmentation datasets, we employ an extra branch of proxy semantic segmentation task for pre-training. We explore various settings like dataset combinations and landscape types, thus providing valuable insights. Experimental results on five challenging benchmarks demonstrate the superiority of our method over the existing state-of-the-art methods. The code is available at $\href{https://github.com/DREAMXFAR/SA-CDNet}{github}$.
- Abstract(参考訳): 2つの類似した画像が与えられたとき、人間は外観(例えば、色、テクスチャ)と意味(例えば、物、関係)の助けを借りて、その相違を識別する。
しかし、主流のバイナリ変更検出モデルは、注釈付きバイナリ変更マップが主な制約となる、教師付きトレーニングパラダイムを採用している。
したがって、このような手法は主に両時間画像間の差分認識の特徴を強調し、変化した風景のセマンティックな理解が損なわれ、ノイズや照明の変化に対して精度が制限される。
そこで本稿では,視覚基盤モデルからのセマンティックな先行概念を取り入れ,変化を検出する能力の向上について検討する。
まず,視覚基盤モデル(例えば,FastSAM)の知識を変換するセマンティック・アウェア・チェンジ検出ネットワーク(SA-CDNet)を提案する。
人間の視覚パラダイムにインスパイアされた新しいデュアルストリーム特徴デコーダは、意味認識特徴と差認識特徴を組み合わせることで変化を区別するために導出される。
第2に、視覚基礎モデルの適応性を高めるための、単一時間事前学習戦略について検討する。
単一時間セグメンテーションデータセットから構築した擬似変化データを用いて、プレトレーニングにプロキシセグメンテーションタスクの余分な分岐を用いる。
データセットの組み合わせやランドスケープタイプなど、さまざまな設定を調査します。
5つの挑戦的ベンチマークによる実験結果から,既存の最先端手法よりも提案手法が優れていることが示された。
コードは$\href{https://github.com/DREAMXFAR/SA-CDNet}{github}$で入手できる。
関連論文リスト
- SChanger: Change Detection from a Semantic Change and Spatial Consistency Perspective [0.6749750044497732]
我々は,データ不足問題に対処するため,セマンティック・チェンジ・ネットワーク(SCN)と呼ばれる微調整戦略を開発した。
両画像間の変化位置は空間的に同一であり,空間的整合性(空間的整合性)の概念である。
これにより、マルチスケールな変更のモデリングが強化され、変更検出セマンティクスの基盤となる関係を捉えるのに役立ちます。
論文 参考訳(メタデータ) (2025-03-26T17:15:43Z) - Semantic-CD: Remote Sensing Image Semantic Change Detection towards Open-vocabulary Setting [19.663899648983417]
従来の変化検出手法は、現実的なシナリオにおける意味圏をまたいだ一般化において、しばしば課題に直面している。
本稿では,リモートセンシング画像における意味変化検出に特化して設計されたSemantic-CDという新しい手法を提案する。
CLIPの広範な語彙知識を活用することで,カテゴリ間の一般化能力を高めることができる。
論文 参考訳(メタデータ) (2025-01-12T13:22:11Z) - Enhancing Perception of Key Changes in Remote Sensing Image Change Captioning [49.24306593078429]
KCFI(Key Change Features and Instruction-tuned)によるリモートセンシング画像変換キャプションのための新しいフレームワークを提案する。
KCFIは、バイテンポラルリモートセンシング画像特徴を抽出するViTsエンコーダと、重要な変化領域を識別するキー特徴知覚器と、画素レベルの変化検出デコーダとを含む。
提案手法の有効性を検証するため,LEVIR-CCデータセット上のいくつかの最新の変更キャプション手法との比較を行った。
論文 参考訳(メタデータ) (2024-09-19T09:33:33Z) - Distractors-Immune Representation Learning with Cross-modal Contrastive Regularization for Change Captioning [71.14084801851381]
変更キャプションは、類似した画像間のセマンティックな変化を簡潔に記述することを目的としている。
既存のほとんどの手法は、それらの違いを直接キャプチャし、エラーを起こしやすい特徴を得るリスクを負う。
本稿では,2つの画像表現の対応するチャネルを関連づけるイントラクタ免疫表現学習ネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T13:00:33Z) - MS-Former: Memory-Supported Transformer for Weakly Supervised Change
Detection with Patch-Level Annotations [50.79913333804232]
弱い教師付き変化検出のためのメモリ支援トランス (MS-Former) を提案する。
MS-Former は双方向注意ブロック (BAB) とパッチレベルの監視スキーム (PSS) から構成される。
3つのベンチマークデータセットの実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-11-16T09:57:29Z) - Align, Perturb and Decouple: Toward Better Leverage of Difference
Information for RSI Change Detection [24.249552791014644]
変化検出は、リモートセンシング画像(RSI)解析において広く採用されている手法である。
そこで我々は,アライメント,摂動,デカップリングといった差分情報を完全に活用するための一連の操作を提案する。
論文 参考訳(メタデータ) (2023-05-30T03:39:53Z) - MapFormer: Boosting Change Detection by Using Pre-change Information [2.436285270638041]
地表面の特徴を記述した既存の地図を両時間画像の変化検出に活用する。
潜在表現の連結による付加情報の簡易な統合は、最先端の変更検出方法よりもはるかに優れていることを示す。
提案手法は,DynamicEarthNet と HRSCD のバイナリ変更 IoU において,絶対 11.7% と 18.4% で既存の変更検出手法より優れている。
論文 参考訳(メタデータ) (2023-03-31T07:39:12Z) - Progressive Semantic-Visual Mutual Adaption for Generalized Zero-Shot
Learning [74.48337375174297]
一般化ゼロショット学習(GZSL)は、目に見えない領域から移行した知識によって、見えないカテゴリを特定する。
プロトタイプと視覚特徴の対応性を段階的にモデル化するために,デュアルセマンティック・ビジュアル・トランスフォーマーモジュール(DSVTM)をデプロイする。
DSVTMは、インスタンス中心のプロトタイプを学習して異なる画像に適応させる、インスタンス駆動セマンティックエンコーダを考案した。
論文 参考訳(メタデータ) (2023-03-27T15:21:43Z) - Self-Pair: Synthesizing Changes from Single Source for Object Change
Detection in Remote Sensing Imagery [6.586756080460231]
本研究では,2つの空間的無関係な画像を用いて変化検出器をトレーニングする。
本稿では,画像の残像としての操作が,変化検出の性能に不可欠であることを示す。
本手法は, 単一時間監視に基づく既存手法よりも優れる。
論文 参考訳(メタデータ) (2022-12-20T13:26:42Z) - Unsupervised Pretraining for Object Detection by Patch Reidentification [72.75287435882798]
教師なし表現学習は、オブジェクトディテクタの事前トレーニング表現で有望なパフォーマンスを実現します。
本研究では,オブジェクト検出のための簡易かつ効果的な表現学習手法であるパッチ再識別(Re-ID)を提案する。
私たちの方法は、トレーニングの反復やデータパーセンテージなど、すべての設定でCOCOの同等を大幅に上回ります。
論文 参考訳(メタデータ) (2021-03-08T15:13:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。