Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models
- URL: http://arxiv.org/abs/2412.17034v1
- Date: Sun, 22 Dec 2024 14:18:39 GMT
- Title: Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models
- Authors: Lang Gao, Xiangliang Zhang, Preslav Nakov, Xiuying Chen,
- Abstract summary: Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text.
We conduct a detailed analysis of seven different jailbreak methods and find that disagreements stem from insufficient observation samples.
We propose a novel defense called textbfActivation Boundary Defense (ABD), which adaptively constrains the activations within the safety boundary.
- Score: 59.25318174362368
- License:
- Abstract: Jailbreaking in Large Language Models (LLMs) is a major security concern as it can deceive LLMs to generate harmful text. Yet, there is still insufficient understanding of how jailbreaking works, which makes it hard to develop effective defense strategies. We aim to shed more light into this issue: we conduct a detailed large-scale analysis of seven different jailbreak methods and find that these disagreements stem from insufficient observation samples. In particular, we introduce \textit{safety boundary}, and we find that jailbreaks shift harmful activations outside that safety boundary, where LLMs are less sensitive to harmful information. We also find that the low and the middle layers are critical in such shifts, while deeper layers have less impact. Leveraging on these insights, we propose a novel defense called \textbf{Activation Boundary Defense} (ABD), which adaptively constrains the activations within the safety boundary. We further use Bayesian optimization to selectively apply the defense method to the low and the middle layers. Our experiments on several benchmarks show that ABD achieves an average DSR of over 98\% against various forms of jailbreak attacks, with less than 2\% impact on the model's general capabilities.
Related papers
- CCJA: Context-Coherent Jailbreak Attack for Aligned Large Language Models [18.06388944779541]
"jailbreaking" is the use of large language models to trigger unintended behaviors.
We propose a novel method to balance the jailbreak attack success rate with semantic coherence.
Our method is superior to state-of-the-art baselines in attack effectiveness.
arXiv Detail & Related papers (2025-02-17T02:49:26Z) - xJailbreak: Representation Space Guided Reinforcement Learning for Interpretable LLM Jailbreaking [32.89084809038529]
Black-box jailbreak is an attack where crafted prompts bypass safety mechanisms in large language models.
We propose a novel black-box jailbreak method leveraging reinforcement learning (RL)
We introduce a comprehensive jailbreak evaluation framework incorporating keywords, intent matching, and answer validation to provide a more rigorous and holistic assessment of jailbreak success.
arXiv Detail & Related papers (2025-01-28T06:07:58Z) - Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
We introduce Layer-AdvPatcher, a methodology designed to defend against jailbreak attacks.
We use an unlearning strategy to patch specific layers within large language models through self-augmented datasets.
Our framework reduces the harmfulness and attack success rate of jailbreak attacks.
arXiv Detail & Related papers (2025-01-05T19:06:03Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
Despite training-time safety alignment, MLLMs remain vulnerable to jailbreak attacks.
We propose Immune, an inference-time defense framework that leverages a safe reward model to defend against jailbreak attacks.
arXiv Detail & Related papers (2024-11-27T19:00:10Z) - Deciphering the Chaos: Enhancing Jailbreak Attacks via Adversarial Prompt Translation [71.92055093709924]
We propose a novel method that "translates" garbled adversarial prompts into coherent and human-readable natural language adversarial prompts.
It also offers a new approach to discovering effective designs for jailbreak prompts, advancing the understanding of jailbreak attacks.
Our method achieves over 90% attack success rates against Llama-2-Chat models on AdvBench, despite their outstanding resistance to jailbreak attacks.
arXiv Detail & Related papers (2024-10-15T06:31:04Z) - HSF: Defending against Jailbreak Attacks with Hidden State Filtering [14.031010511732008]
We propose a jailbreak attack defense strategy based on a Hidden State Filter (HSF)
HSF enables the model to preemptively identify and reject adversarial inputs before the inference process begins.
It significantly reduces the success rate of jailbreak attacks while minimally impacting responses to benign user queries.
arXiv Detail & Related papers (2024-08-31T06:50:07Z) - Defensive Prompt Patch: A Robust and Interpretable Defense of LLMs against Jailbreak Attacks [59.46556573924901]
This paper introduces Defensive Prompt Patch (DPP), a novel prompt-based defense mechanism for large language models (LLMs)
Unlike previous approaches, DPP is designed to achieve a minimal Attack Success Rate (ASR) while preserving the high utility of LLMs.
Empirical results conducted on LLAMA-2-7B-Chat and Mistral-7B-Instruct-v0.2 models demonstrate the robustness and adaptability of DPP.
arXiv Detail & Related papers (2024-05-30T14:40:35Z) - Weak-to-Strong Jailbreaking on Large Language Models [96.50953637783581]
Large language models (LLMs) are vulnerable to jailbreak attacks.
Existing jailbreaking methods are computationally costly.
We propose the weak-to-strong jailbreaking attack.
arXiv Detail & Related papers (2024-01-30T18:48:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.