Classical simulability of Clifford+T circuits with Clifford-augmented matrix product states
- URL: http://arxiv.org/abs/2412.17209v1
- Date: Mon, 23 Dec 2024 01:26:40 GMT
- Title: Classical simulability of Clifford+T circuits with Clifford-augmented matrix product states
- Authors: Zejun Liu, Bryan K. Clark,
- Abstract summary: We investigate the classical simulatability of $N$-qubit Clifford circuits doped with $t$ number of $T$-gates.
We use a simple disentangling algorithm to reduce the entanglement of the MPS component in CAMPS using control-Pauli gates.
This work establishes a versatile framework based on CAMPS for understanding classical simulatability of $t$-doped circuits.
- Score: 0.552480439325792
- License:
- Abstract: Generic quantum circuits typically require exponential resources for classical simulation, yet understanding the limits of classical simulability remains a fundamental question. In this work, we investigate the classical simulability of $N$-qubit Clifford circuits doped with $t$ number of $T$-gates by converting the circuits into Clifford-augmented matrix product states (CAMPS). We develop a simple disentangling algorithm to reduce the entanglement of the MPS component in CAMPS using control-Pauli gates, which replaces the standard algorithm relying on heuristic optimization when $t\lesssim N$, ensuring that the entanglement of the MPS component of CAMPS does not increase for $N$ specific $T$-gates. Using a simplified model, we explore in what cases these $N$ $T$-gates happen sufficiently early in the circuit to make classical simulatability of $t$-doped circuits out to $t=N$ possible. We give evidence that in one-dimension where the $T$-gates are uniformly distributed over the qubits and in higher spatial dimensions where the $T$-gates are deep enough we generically expect polynomial or quasi-polynomial simulations when $t \leq N$. We further explore the representability of CAMPS in the regime of $t>N$, uncovering a non-trivial dependence of the MPS entanglement on the distribution of $T$-gates. While it is polynomially efficient to evaluate the expectation of Pauli observable or the quantum magic in CAMPS, we propose algorithms for sampling, probability and amplitude estimation of bitstrings, and evaluation of entanglement R\'enyi entropy from CAMPS, which, though still having exponential complexity, improve efficiency over the standard MPS simulations. This work establishes a versatile framework based on CAMPS for understanding classical simulatability of $t$-doped circuits and exploring the interplay between quantum entanglement and quantum magic on quantum systems.
Related papers
- Disentangling unitary dynamics with classically simulable quantum circuits [0.0]
We study both quantum circuit and Hamiltonian dynamics.
We find that expectations of Pauli operators can be simulated efficiently even for deep Clifford circuits.
For the Hamiltonian dynamics we find that the classical simulation generically quickly becomes inefficient.
arXiv Detail & Related papers (2024-10-11T17:18:26Z) - Classical Simulability of Quantum Circuits with Shallow Magic Depth [12.757419723444956]
We investigate the classical simulability of quantum circuits with alternating Clifford and $T$ layers.
Surprisingly, with the addition of just one $T$ gate layer or merely replacing all $T$ gates with $Tfrac12$, the Pauli evaluation task reveals a sharp complexity transition from P to GapP-complete.
arXiv Detail & Related papers (2024-09-20T18:00:00Z) - Pauli path simulations of noisy quantum circuits beyond average case [0.3277163122167433]
For random quantum circuits on $n$ qubits of depth, the task of sampling from the output state can be efficiently performed classically using a Pauli path method.
We derive sufficient conditions for simulatability in terms of noise rate and the fraction of gates that are T gates, and show that if noise is introduced at a faster rate, the simulation becomes classically easy.
arXiv Detail & Related papers (2024-07-22T21:58:37Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Quantum circuit compilation and hybrid computation using Pauli-based
computation [0.0]
Pauli-based computation (PBC) is driven by a sequence of adaptively chosen, non-destructive measurements of Pauli observables.
We propose practical ways of implementing PBC as adaptive quantum circuits and provide code to do the required classical side-processing.
arXiv Detail & Related papers (2022-03-03T16:01:55Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.