A Quantum Super-Krylov Method for Ground State Energy Estimation
- URL: http://arxiv.org/abs/2412.17289v1
- Date: Mon, 23 Dec 2024 05:21:43 GMT
- Title: A Quantum Super-Krylov Method for Ground State Energy Estimation
- Authors: Adam Byrne, William Kirby, Kirk M. Soodhalter, Sergiy Zhuk,
- Abstract summary: Krylov quantum diagonalization methods for ground state energy estimation have emerged as a compelling use case for quantum computers.
We present a quantum Krylov method that uses only time evolutions and recovery probabilities, making it well adapted for current quantum computers.
We prove that the resulting ground energy estimate converges in the noise-free regime and provide a classical numerical demonstration of the method in the presence of noise.
- Score: 0.562479170374811
- License:
- Abstract: Krylov quantum diagonalization methods for ground state energy estimation have emerged as a compelling use case for quantum computers. However, many existing methods rely on subroutines, in particular the Hadamard test, that are challenging on near-term quantum hardware. Motivated by this problem, we present a quantum Krylov method that uses only time evolutions and recovery probabilities, making it well adapted for current quantum computers. This is supplemented with a classical post-processing derivative estimation algorithm. The method ultimately estimates the eigenvalues of the commutator super-operator $X\to[H,X]$, so we declare it a super-Krylov method. We propose applying this method to estimate the ground-state energy of two classes of Hamiltonians: where either the highest energy is easily computable, or where the lowest and highest energies have the same absolute value. We prove that the resulting ground energy estimate converges in the noise-free regime and provide a classical numerical demonstration of the method in the presence of noise.
Related papers
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Quantum Boltzmann machine learning of ground-state energies [3.187381965457262]
Esting the ground-state energy of Hamiltonians is a fundamental task for which quantum computers can be helpful.
We analyze the performance of quantum Boltzmann machines for this task.
Our algorithm estimates the gradient of the energy function efficiently by means of a novel quantum circuit construction.
arXiv Detail & Related papers (2024-10-16T18:22:03Z) - A quantum implementation of high-order power method for estimating geometric entanglement of pure states [39.58317527488534]
This work presents a quantum adaptation of the iterative higher-order power method for estimating the geometric measure of entanglement of multi-qubit pure states.
It is executable on current (hybrid) quantum hardware and does not depend on quantum memory.
We study the effect of noise on the algorithm using a simple theoretical model based on the standard depolarising channel.
arXiv Detail & Related papers (2024-05-29T14:40:24Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Solving the Lipkin model using quantum computers with two qubits only
with a hybrid quantum-classical technique based on the Generator Coordinate
Method [0.0]
We discuss the possibility of using the generator coordinate method (GCM) using hybrid quantum-classical algorithms with reduced quantum resources.
We show that, ultimately, only two qubits is enough to solve the problem regardless of the particle number.
As an alternative to this technique, we also explored how the quantum state deflation method can be adapted to the GCM problem.
arXiv Detail & Related papers (2023-12-07T21:18:27Z) - Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
We present a novel approach to estimating physical observables which leads to a two order of magnitude reduction in the required sampling of the quantum state.
The method can be applied to excited-state calculations and simulation for general chemistry on quantum devices.
arXiv Detail & Related papers (2023-06-26T09:22:06Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Exact and efficient Lanczos method on a quantum computer [0.0]
We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space.
The construction is exact in the sense that the Krylov space is identical to that of the Lanczos method.
arXiv Detail & Related papers (2022-08-01T01:57:23Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.