Quantum Thermal State Preparation
- URL: http://arxiv.org/abs/2303.18224v2
- Date: Wed, 15 Nov 2023 18:57:44 GMT
- Title: Quantum Thermal State Preparation
- Authors: Chi-Fang Chen, Michael J. Kastoryano, Fernando G.S.L. Brand\~ao, and
Andr\'as Gily\'en
- Abstract summary: We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
- Score: 39.91303506884272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preparing ground states and thermal states is essential for simulating
quantum systems on quantum computers. Despite the hope for practical quantum
advantage in quantum simulation, popular state preparation approaches have been
challenged. Monte Carlo-style quantum Gibbs samplers have emerged as an
alternative, but prior proposals have been unsatisfactory due to technical
obstacles rooted in energy-time uncertainty. We introduce simple
continuous-time quantum Gibbs samplers that overcome these obstacles by
efficiently simulating Nature-inspired quantum master equations (Lindbladians).
In addition, we construct the first provably accurate and efficient algorithm
for preparing certain purified Gibbs states (called thermal field double states
in high-energy physics) of rapidly thermalizing systems; this algorithm also
benefits from a quantum walk speedup. Our algorithms' costs have a provable
dependence on temperature, accuracy, and the mixing time (or spectral gap) of
the relevant Lindbladian. We complete the first rigorous proof of finite-time
thermalization for physically derived Lindbladians by developing a general
analytic framework for nonasymptotic secular approximation and approximate
detailed balance. Given the success of classical Markov chain Monte Carlo
(MCMC) algorithms and the ubiquity of thermodynamics, we anticipate that
quantum Gibbs sampling will become indispensable in quantum computing.
Related papers
- Optimal quantum algorithm for Gibbs state preparation [2.403252956256118]
A recently introduced disispative evolution has been shown to be efficiently implementable on a quantum computer.
We prove that, at high enough temperatures, this evolution reaches the Gibbs state in time scaling logarithmically with system size.
We then employ our result to the problem of estimating partition functions at high temperature, showing an improved performance over previous classical and quantum algorithms.
arXiv Detail & Related papers (2024-11-07T17:21:26Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Quantum computational advantage with constant-temperature Gibbs sampling [1.1930434318557157]
A quantum system coupled to a bath at some fixed, finite temperature converges to its Gibbs state.
This thermalization process defines a natural, physically-motivated model of quantum computation.
We consider sampling from the measurement outcome distribution of quantum Gibbs states at constant temperatures.
arXiv Detail & Related papers (2024-04-23T00:29:21Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Kernel-Function Based Quantum Algorithms for Finite Temperature Quantum
Simulation [5.188498150496968]
We present a quantum kernel function (QKFE) algorithm for solving thermodynamic properties of quantum many-body systems.
As compared to its classical counterpart, namely the kernel method (KPM), QKFE has an exponential advantage in the cost of both time and memory.
We demonstrate its efficiency with applications to one and two-dimensional quantum spin models, and a fermionic lattice.
arXiv Detail & Related papers (2022-02-02T18:00:04Z) - Preparing thermal states on noiseless and noisy programmable quantum
processors [0.0]
We provide two quantum algorithms with provable guarantees to prepare thermal states on near-term quantum computers.
The first algorithm is inspired by the natural thermalization process where the ancilla qubits act as the infinite thermal bath.
The second algorithm works for any system and in general runs in exponential time.
arXiv Detail & Related papers (2021-12-29T18:06:36Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - A Variational Quantum Algorithm for Preparing Quantum Gibbs States [0.22559617939136506]
Preparation of Gibbs distributions is an important task for quantum computation.
We present a variational approach to preparing Gibbs states that is based on minimizing the free energy of a quantum system.
arXiv Detail & Related papers (2020-01-31T20:52:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.