論文の概要: Collaborative Optimization in Financial Data Mining Through Deep Learning and ResNeXt
- arxiv url: http://arxiv.org/abs/2412.17314v1
- Date: Mon, 23 Dec 2024 06:14:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:56:02.468097
- Title: Collaborative Optimization in Financial Data Mining Through Deep Learning and ResNeXt
- Title(参考訳): ディープラーニングとResNeXtによる金融データマイニングにおける協調的最適化
- Authors: Pengbin Feng, Yankaiqi Li, Yijiashun Qi, Xiaojun Guo, Zhenghao Lin,
- Abstract要約: 本研究ではResNeXtに基づくマルチタスク学習フレームワークを提案する。
提案手法は精度,F1スコア,ルート平均二乗誤差,その他の指標において優れた性能を示す。
- 参考スコア(独自算出の注目度): 4.047576220541502
- License:
- Abstract: This study proposes a multi-task learning framework based on ResNeXt, aiming to solve the problem of feature extraction and task collaborative optimization in financial data mining. Financial data usually has the complex characteristics of high dimensionality, nonlinearity, and time series, and is accompanied by potential correlations between multiple tasks, making it difficult for traditional methods to meet the needs of data mining. This study introduces the ResNeXt model into the multi-task learning framework and makes full use of its group convolution mechanism to achieve efficient extraction of local patterns and global features of financial data. At the same time, through the design of task sharing layers and dedicated layers, it is established between multiple related tasks. Deep collaborative optimization relationships. Through flexible multi-task loss weight design, the model can effectively balance the learning needs of different tasks and improve overall performance. Experiments are conducted on a real S&P 500 financial data set, verifying the significant advantages of the proposed framework in classification and regression tasks. The results indicate that, when compared to other conventional deep learning models, the proposed method delivers superior performance in terms of accuracy, F1 score, root mean square error, and other metrics, highlighting its outstanding effectiveness and robustness in handling complex financial data. This research provides an efficient and adaptable solution for financial data mining, and at the same time opens up a new research direction for the combination of multi-task learning and deep learning, which has important theoretical significance and practical application value.
- Abstract(参考訳): 本研究では、ResNeXtに基づくマルチタスク学習フレームワークを提案し、金融データマイニングにおける特徴抽出とタスク協調最適化の課題を解決することを目的とする。
金融データは通常、高次元性、非線形性、時系列の複雑な特性を持ち、複数のタスク間の潜在的な相関を伴うため、従来の手法ではデータマイニングのニーズを満たすことが困難である。
本研究では、ResNeXtモデルをマルチタスク学習フレームワークに導入し、そのグループ畳み込み機構をフル活用して、局所パターンの効率的な抽出と財務データのグローバルな特徴を実現する。
同時に、タスク共有レイヤと専用レイヤの設計を通じて、複数の関連するタスクの間に確立される。
深い協調的な最適化関係。
フレキシブルなマルチタスク損失重み設計により、モデルは異なるタスクの学習ニーズを効果的にバランスさせ、全体的なパフォーマンスを向上させることができる。
実際のS&P 500ファイナンシャルデータセット上で実験を行い、分類および回帰タスクにおいて提案されたフレームワークの顕著な利点を検証する。
その結果,従来のディープラーニングモデルと比較して,F1スコア,ルート平均二乗誤差,その他の指標において優れた性能を示し,複雑な財務データを扱う上での優れた有効性と堅牢性を強調した。
本研究は、金融データマイニングのための効率的かつ適応的なソリューションを提供し、同時に、重要な理論的意義と実用的な応用価値を有するマルチタスク学習とディープラーニングの組み合わせに関する新たな研究方向を開く。
関連論文リスト
- Mixing It Up: The Cocktail Effect of Multi-Task Fine-Tuning on LLM Performance -- A Case Study in Finance [0.32985979395737774]
本稿では,ドメイン固有タスクのための細調整型大規模言語モデル (LLM) の詳細な解析を行う。
ドメイン固有のケースでは、ターゲットタスクのみを微調整することが、必ずしも最も効果的な戦略ではないことが分かりました。
我々は、Phi-3-Miniのような小さなモデルが、どのようにして最先端の結果が得られるかを実証する。
論文 参考訳(メタデータ) (2024-10-01T22:35:56Z) - Dynamic Adaptive Optimization for Effective Sentiment Analysis Fine-Tuning on Large Language Models [0.0]
大規模言語モデル(LLM)は、マルチタスク学習を利用して特定のタスクを同時に処理することで、感情分析の一般的なパラダイムとなっている。
動的適応最適化(DAO)モジュールを用いた新しいマルチタスク学習フレームワークを提案する。
この研究は、平均二乗誤差(MSE)と精度(ACC)を、以前の研究と比べてそれぞれ15.58%、1.24%改善した。
論文 参考訳(メタデータ) (2024-08-15T19:13:38Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
大規模深層ニューラルネットワークに対する多目的最適化問題を解くことは、損失ランドスケープの複雑さと高価な計算コストのために難しい課題である。
本稿では,専門家(MoE)をベースとしたモデル融合を用いて,この問題を実用的でスケーラブルに解決する手法を提案する。
特殊な単一タスクモデルの重みをまとめることで、MoEモジュールは複数の目的間のトレードオフを効果的に捉えることができる。
論文 参考訳(メタデータ) (2024-06-14T07:16:18Z) - Token-Efficient Leverage Learning in Large Language Models [13.830828529873056]
大規模言語モデル(LLM)は様々なタスクで優れていますが、高リソースのシナリオではより良く機能しています。
データ不足と特定のタスクにLLMを適用することの難しさは、この課題を複雑にしている。
本稿では,Token-Efficient Leverage Learning (TELL) と呼ばれる方法論の合理化実装を提案する。
論文 参考訳(メタデータ) (2024-04-01T04:39:44Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
本研究では,自然言語処理とコンピュータビジョンの分野における9つのタスクの集合であるベンチマークを作成する。
外部知識を制約としてモデル化し、各タスクの制約のソースを特定し、これらの制約を使用するさまざまなモデルを実装します。
論文 参考訳(メタデータ) (2023-02-16T16:45:36Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Cost-Effective Federated Learning Design [37.16466118235272]
フェデレーション学習(federated learning, fl)は、多数のデバイスが生のデータを共有することなく、協調的にモデルを学習できる分散学習パラダイムである。
その効率性と有効性にもかかわらず、反復的なオンデバイス学習プロセスは、学習時間とエネルギー消費の面でかなりのコストを伴います。
本稿では,本質的制御変数を最適に選択する適応型flの設計法を分析し,総コストを最小化し,収束性を確保した。
論文 参考訳(メタデータ) (2020-12-15T14:45:11Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
本稿では,TFCL(Task-Feature Collaborative Learning)と呼ばれる新しいマルチタスク学習手法を提案する。
具体的には、まず、特徴とタスクの協調的なグループ化を活用するために、不均一なブロック対角構造正規化器を用いたベースモデルを提案する。
実際の拡張として,重なり合う機能と難易度を区別することで,基本モデルを拡張します。
論文 参考訳(メタデータ) (2020-04-29T02:32:04Z) - Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning [100.73223416589596]
深層強化学習を用いたコスト依存型ポートフォリオ選択手法を提案する。
具体的には、価格系列パターンと資産相関の両方を抽出するために、新しい2ストリームポートフォリオポリシーネットワークを考案した。
蓄積したリターンを最大化し、強化学習によるコストの両立を抑えるため、新たなコスト感受性報酬関数が開発された。
論文 参考訳(メタデータ) (2020-03-06T06:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。