Three-Class Text Sentiment Analysis Based on LSTM
- URL: http://arxiv.org/abs/2412.17347v1
- Date: Mon, 23 Dec 2024 07:21:07 GMT
- Title: Three-Class Text Sentiment Analysis Based on LSTM
- Authors: Yin Qixuan,
- Abstract summary: This paper introduces a three-class sentiment classification method for Weibo comments using Long Short-Term Memory (LSTM) networks.
Experimental results demonstrate superior performance, achieving an accuracy of 98.31% and an F1 score of 98.28%.
- Score: 0.0
- License:
- Abstract: Sentiment analysis is a crucial task in natural language processing (NLP) with applications in public opinion monitoring, market research, and beyond. This paper introduces a three-class sentiment classification method for Weibo comments using Long Short-Term Memory (LSTM) networks to discern positive, neutral, and negative sentiments. LSTM, as a deep learning model, excels at capturing long-distance dependencies in text data, providing significant advantages over traditional machine learning approaches. Through preprocessing and feature extraction from Weibo comment texts, our LSTM model achieves precise sentiment prediction. Experimental results demonstrate superior performance, achieving an accuracy of 98.31% and an F1 score of 98.28%, notably outperforming conventional models and other deep learning methods. This underscores the effectiveness of LSTM in capturing nuanced sentiment information within text, thereby enhancing classification accuracy. Despite its strengths, the LSTM model faces challenges such as high computational complexity and slower processing times for lengthy texts. Moreover, complex emotional expressions like sarcasm and humor pose additional difficulties. Future work could explore combining pre-trained models or advancing feature engineering techniques to further improve both accuracy and practicality. Overall, this study provides an effective solution for sentiment analysis on Weibo comments.
Related papers
- Semantic Consistency Regularization with Large Language Models for Semi-supervised Sentiment Analysis [20.503153899462323]
We propose a framework for semi-supervised sentiment analysis.
We introduce two prompting strategies to semantically enhance unlabeled text.
Experiments show our method achieves remarkable performance over prior semi-supervised methods.
arXiv Detail & Related papers (2025-01-29T12:03:11Z) - A hybrid transformer and attention based recurrent neural network for robust and interpretable sentiment analysis of tweets [0.3495246564946556]
Existing models face challenges with linguistic diversity, generalizability, and explainability.
We propose TRABSA, a hybrid framework integrating transformer-based architectures, attention mechanisms, and BiLSTM networks.
We bridge gaps in sentiment analysis benchmarks, ensuring state-of-the-art accuracy.
arXiv Detail & Related papers (2024-03-30T09:20:43Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
Large Language Models (LLMs) have achieved remarkable performance across a wide variety of natural language tasks.
However, their large size makes their inference slow and computationally expensive.
We show that it enables these layers to acquire 'good' generation ability without affecting the generation ability of the final layer.
arXiv Detail & Related papers (2023-10-28T04:07:58Z) - GLS-CSC: A Simple but Effective Strategy to Mitigate Chinese STM Models'
Over-Reliance on Superficial Clue [51.713301130055065]
We analyze and mitigate the influence of superficial clues on STM models.
We propose Gradually Learn Samples Containing Superficial Clue (GLS-CSC) as a training strategy.
We demonstrate that GLS-CSC outperforms existing methods in terms of enhancing the robustness and generalization of Chinese STM models.
arXiv Detail & Related papers (2023-09-08T07:10:57Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
This paper investigates the capabilities of large language models (LLMs) in performing various sentiment analysis tasks.
We evaluate performance across 13 tasks on 26 datasets and compare the results against small language models (SLMs) trained on domain-specific datasets.
arXiv Detail & Related papers (2023-05-24T10:45:25Z) - TMR: Text-to-Motion Retrieval Using Contrastive 3D Human Motion
Synthesis [59.465092047829835]
We present TMR, a simple yet effective approach for text to 3D human motion retrieval.
Our method extends the state-of-the-art text-to-motion synthesis model TEMOS.
We show that maintaining the motion generation loss, along with the contrastive training, is crucial to obtain good performance.
arXiv Detail & Related papers (2023-05-02T17:52:41Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
We propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM.
We leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention.
arXiv Detail & Related papers (2023-01-21T19:28:25Z) - Aspect-Based Sentiment Analysis using Local Context Focus Mechanism with
DeBERTa [23.00810941211685]
Aspect-Based Sentiment Analysis (ABSA) is a fine-grained task in the field of sentiment analysis.
Recent DeBERTa model (Decoding-enhanced BERT with disentangled attention) to solve Aspect-Based Sentiment Analysis problem.
arXiv Detail & Related papers (2022-07-06T03:50:31Z) - A journey in ESN and LSTM visualisations on a language task [77.34726150561087]
We trained ESNs and LSTMs on a Cross-Situationnal Learning (CSL) task.
The results are of three kinds: performance comparison, internal dynamics analyses and visualization of latent space.
arXiv Detail & Related papers (2020-12-03T08:32:01Z) - Revisiting LSTM Networks for Semi-Supervised Text Classification via
Mixed Objective Function [106.69643619725652]
We develop a training strategy that allows even a simple BiLSTM model, when trained with cross-entropy loss, to achieve competitive results.
We report state-of-the-art results for text classification task on several benchmark datasets.
arXiv Detail & Related papers (2020-09-08T21:55:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.