Bi-Directional Multi-Scale Graph Dataset Condensation via Information Bottleneck
- URL: http://arxiv.org/abs/2412.17355v1
- Date: Mon, 23 Dec 2024 07:32:02 GMT
- Title: Bi-Directional Multi-Scale Graph Dataset Condensation via Information Bottleneck
- Authors: Xingcheng Fu, Yisen Gao, Beining Yang, Yuxuan Wu, Haodong Qian, Qingyun Sun, Xianxian Li,
- Abstract summary: We propose a novel GNN-centric Bi-directional Multi-Scale Graph dataset condensation framework.
In this paper, we explore unifying paradigms by operating on both large-to-small and small-to-large for multi-scale graph condensation.
- Score: 10.680304093708147
- License:
- Abstract: Dataset condensation has significantly improved model training efficiency, but its application on devices with different computing power brings new requirements for different data sizes. Thus, condensing multiple scale graphs simultaneously is the core of achieving efficient training in different on-device scenarios. Existing efficient works for multi-scale graph dataset condensation mainly perform efficient approximate computation in scale order (large-to-small or small-to-large scales). However, for non-Euclidean structures of sparse graph data, these two commonly used paradigms for multi-scale graph dataset condensation have serious scaling down degradation and scaling up collapse problems of a graph. The main bottleneck of the above paradigms is whether the effective information of the original graph is fully preserved when consenting to the primary sub-scale (the first of multiple scales), which determines the condensation effect and consistency of all scales. In this paper, we proposed a novel GNN-centric Bi-directional Multi-Scale Graph Dataset Condensation (BiMSGC) framework, to explore unifying paradigms by operating on both large-to-small and small-to-large for multi-scale graph condensation. Based on the mutual information theory, we estimate an optimal ``meso-scale'' to obtain the minimum necessary dense graph preserving the maximum utility information of the original graph, and then we achieve stable and consistent ``bi-directional'' condensation learning by optimizing graph eigenbasis matching with information bottleneck on other scales. Encouraging empirical results on several datasets demonstrates the significant superiority of the proposed framework in graph condensation at different scales.
Related papers
- DHIL-GT: Scalable Graph Transformer with Decoupled Hierarchy Labeling [10.556366638048384]
Graph Transformer (GT) has recently emerged as a promising neural network architecture for learning graph-structured data.
We propose DHIL-GT, a scalable Graph Transformer that simplifies network learning by fully decoupling the graph computation to a separate stage in advance.
DHIL-GT is efficient in terms of computational boost and mini-batch capability over existing scalable Graph Transformer designs on large-scale benchmarks.
arXiv Detail & Related papers (2024-12-06T02:59:01Z) - Simple Graph Condensation [30.85754566420301]
Graph condensation involves tuning Graph Neural Networks (GNNs) on a small condensed graph for use on a large-scale original graph.
We introduce the Simple Graph Condensation (SimGC) framework, which aligns the condensed graph with the original graph from the input layer to the prediction layer.
SimGC achieves a significant speedup of up to 10 times compared to existing graph condensation methods.
arXiv Detail & Related papers (2024-03-22T05:04:48Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
Existing graph condensation methods rely on the joint optimization of nodes and structures in the condensed graph.
We advocate a new Structure-Free Graph Condensation paradigm, named SFGC, to distill a large-scale graph into a small-scale graph node set.
arXiv Detail & Related papers (2023-06-05T07:53:52Z) - Condensing Graphs via One-Step Gradient Matching [50.07587238142548]
We propose a one-step gradient matching scheme, which performs gradient matching for only one single step without training the network weights.
Our theoretical analysis shows this strategy can generate synthetic graphs that lead to lower classification loss on real graphs.
In particular, we are able to reduce the dataset size by 90% while approximating up to 98% of the original performance.
arXiv Detail & Related papers (2022-06-15T18:20:01Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
We propose an efficient multiple graph learning model via a small number of anchor points and tensor Schatten p-norm minimization.
Specifically, we construct a hidden and tractable large graph by anchor graph for each view.
We develop an efficient algorithm, which scales linearly with the data size, to solve our proposed model.
arXiv Detail & Related papers (2021-06-29T13:10:56Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.