論文の概要: A Temporal Convolutional Network-based Approach for Network Intrusion Detection
- arxiv url: http://arxiv.org/abs/2412.17452v1
- Date: Mon, 23 Dec 2024 10:19:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:59:56.971757
- Title: A Temporal Convolutional Network-based Approach for Network Intrusion Detection
- Title(参考訳): ネットワーク侵入検出のための時間畳み込みネットワークに基づくアプローチ
- Authors: Rukmini Nazre, Rujuta Budke, Omkar Oak, Suraj Sawant, Amit Joshi,
- Abstract要約: 本研究では,ネットワークトラフィックデータの依存関係をキャプチャするために,拡張畳み込みを伴う残差ブロックアーキテクチャを特徴とする時間畳み込みネットワーク(TCN)モデルを提案する。
提案したモデルは96.72%の精度と0.0688の損失を達成し、1D CNN、CNN-LSTM、CNN-GRU、CNN-BiLSTM、CNN-GRU-LSTMモデルを上回った。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Network intrusion detection is critical for securing modern networks, yet the complexity of network traffic poses significant challenges to traditional methods. This study proposes a Temporal Convolutional Network(TCN) model featuring a residual block architecture with dilated convolutions to capture dependencies in network traffic data while ensuring training stability. The TCN's ability to process sequences in parallel enables faster, more accurate sequence modeling than Recurrent Neural Networks. Evaluated on the Edge-IIoTset dataset, which includes 15 classes with normal traffic and 14 cyberattack types, the proposed model achieved an accuracy of 96.72% and a loss of 0.0688, outperforming 1D CNN, CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-GRU-LSTM models. A class-wise classification report, encompassing metrics such as recall, precision, accuracy, and F1-score, demonstrated the TCN model's superior performance across varied attack categories, including Malware, Injection, and DDoS. These results underscore the model's potential in addressing the complexities of network intrusion detection effectively.
- Abstract(参考訳): ネットワーク侵入検出は現代のネットワークの確保に不可欠であるが、ネットワークトラフィックの複雑さは従来の手法に重大な課題をもたらす。
本研究では,ネットワークトラフィックデータの依存関係を捕捉し,トレーニング安定性を確保しつつ,拡張畳み込みを伴う残差ブロックアーキテクチャを特徴とする時間畳み込みネットワーク(TCN)モデルを提案する。
TCNの並列処理能力は、リカレントニューラルネットワークよりも高速で正確なシーケンスモデリングを可能にする。
通常のトラフィックを持つ15のクラスと14のサイバー攻撃タイプを含むEdge-IIoTsetデータセットに基づいて評価され、提案モデルは96.72%の精度と0.0688の損失を達成し、1D CNN、CNN-LSTM、CNN-GRU、CNN-BiLSTM、CNN-GRU-LSTMモデルを上回った。
リコール、精度、精度、F1スコアなどの指標を含むクラスワイド分類レポートでは、マルウェア、インジェクション、DDoSを含む様々な攻撃カテゴリにおけるTNモデルの優れたパフォーマンスが示された。
これらの結果は、ネットワーク侵入検出の複雑さに効果的に対処するモデルの可能性を示している。
関連論文リスト
- Securing Healthcare with Deep Learning: A CNN-Based Model for medical IoT Threat Detection [0.44998333629984877]
インターネット・オブ・メディカル・モノ(IoMT)の医療システムへの統合は、患者のケアを大幅に強化した。
本稿では、IoMT環境におけるサイバー攻撃を検出するために、畳み込みニューラルネットワーク(CNN)に基づく新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-26T14:27:17Z) - Enhancing IoT Security with CNN and LSTM-Based Intrusion Detection Systems [0.23408308015481666]
提案モデルは,畳み込みニューラルネットワーク(CNN)と長短期記憶(LSTM)ディープラーニング(DL)モデルを組み合わせて構成する。
この融合により、IoTトラフィックをバイナリカテゴリ、良性、悪意のあるアクティビティに検出し、分類することが可能になる。
提案モデルの精度は98.42%,最小損失は0.0275である。
論文 参考訳(メタデータ) (2024-05-28T22:12:15Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Machine learning-based network intrusion detection for big and
imbalanced data using oversampling, stacking feature embedding and feature
extraction [6.374540518226326]
侵入検知システム(IDS)は、悪意あるアクターや活動を検出することによって相互接続ネットワークを保護する上で重要な役割を果たす。
本稿では,データ不均衡にRandom Oversampling (RO) を用いる新しいMLベースのネットワーク侵入検出モデルと,次元削減のためのStacking Feature Embedding (PCA)を提案する。
CIC-IDS 2017データセットを使用すると、DT、RF、ETモデルは99.99%の精度に達し、DTとRFモデルはCIC-IDS 2018データセットで99.94%の精度が得られる。
論文 参考訳(メタデータ) (2024-01-22T05:49:41Z) - Comprehensive Analysis of Network Robustness Evaluation Based on Convolutional Neural Networks with Spatial Pyramid Pooling [4.366824280429597]
複雑なネットワークを理解し、最適化し、修復するための重要な側面である接続性の堅牢性は、伝統的にシミュレーションを通じて評価されてきた。
空間ピラミッドプールネットワーク(SPP-net)を用いた畳み込みニューラルネットワーク(CNN)モデルの設計により,これらの課題に対処する。
提案したCNNモデルは,全ての除去シナリオにおいて,攻撃曲線とロバストネスの両値の正確な評価を一貫して達成していることを示す。
論文 参考訳(メタデータ) (2023-08-10T09:54:22Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - From Environmental Sound Representation to Robustness of 2D CNN Models
Against Adversarial Attacks [82.21746840893658]
本稿では, 各種環境音響表現(スペクトログラム)が, 被害者残差畳み込みニューラルネットワークの認識性能と対角攻撃性に与える影響について検討する。
DWTスペクトログラムでトレーニングしたResNet-18モデルでは高い認識精度が得られたが、このモデルに対する攻撃は敵にとって比較的コストがかかる。
論文 参考訳(メタデータ) (2022-04-14T15:14:08Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
本稿では,アーキテクチャ検索を対象ハードウェアから切り離すための時間推定フレームワークを提案する。
提案手法は,マイクロカーネルと多層ベンチマークからモデルの集合を抽出し,マッピングとネットワーク実行時間推定のためのスタックモデルを生成する。
生成した混合モデルの推定精度と忠実度, 統計モデルとルーフラインモデル, 評価のための洗練されたルーフラインモデルを比較した。
論文 参考訳(メタデータ) (2021-05-07T11:39:05Z) - 1D CNN Based Network Intrusion Detection with Normalization on
Imbalanced Data [0.19336815376402716]
侵入検知システム(IDS)は、コンピュータネットワークにおいて、コンピュータ資源とデータを外部攻撃から保護する重要な役割を担っている。
最近のIDSは、予期せぬ、予測不能な攻撃に対するIDSの柔軟性と効率性を向上する課題に直面している。
1次元畳み込みニューラルネットワーク(1D-CNN)を用いた効率的かつ柔軟なIDS構築のための深層学習手法を提案する。
論文 参考訳(メタデータ) (2020-03-01T12:23:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。