論文の概要: Developmental Predictive Coding Model for Early Infancy Mono and Bilingual Vocal Continual Learning
- arxiv url: http://arxiv.org/abs/2412.17456v1
- Date: Mon, 23 Dec 2024 10:23:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:00:57.032352
- Title: Developmental Predictive Coding Model for Early Infancy Mono and Bilingual Vocal Continual Learning
- Title(参考訳): 幼児期モノとバイリンガル音声連続学習のための発達予測符号化モデル
- Authors: Xiaodan Chen, Alexandre Pitti, Mathias Quoy, Nancy F Chen,
- Abstract要約: 本稿では,連続学習機構を備えた小型生成ニューラルネットワークを提案する。
我々のモデルは解釈可能性を重視し,オンライン学習の利点を実証する。
- 参考スコア(独自算出の注目度): 69.8008228833895
- License:
- Abstract: Understanding how infants perceive speech sounds and language structures is still an open problem. Previous research in artificial neural networks has mainly focused on large dataset-dependent generative models, aiming to replicate language-related phenomena such as ''perceptual narrowing''. In this paper, we propose a novel approach using a small-sized generative neural network equipped with a continual learning mechanism based on predictive coding for mono-and bilingual speech sound learning (referred to as language sound acquisition during ''critical period'') and a compositional optimization mechanism for generation where no learning is involved (later infancy sound imitation). Our model prioritizes interpretability and demonstrates the advantages of online learning: Unlike deep networks requiring substantial offline training, our model continuously updates with new data, making it adaptable and responsive to changing inputs. Through experiments, we demonstrate that if second language acquisition occurs during later infancy, the challenges associated with learning a foreign language after the critical period amplify, replicating the perceptual narrowing effect.
- Abstract(参考訳): 幼児が音声や言語構造をどのように知覚するかを理解することは、依然としてオープンな問題である。
人工ニューラルネットワークのこれまでの研究は、主に大規模なデータセットに依存した生成モデルに焦点を当てており、"知覚的絞り込み"のような言語関連の現象を再現することを目的としている。
本稿では,単言語およびバイリンガル音声学習の予測符号化に基づく連続学習機構を備えた小型生成ニューラルネットワーク(「臨界期」における言語音の獲得」と呼ばれる)と,学習を伴わない生成のための合成最適化機構(後の幼児音の模倣)を用いた新しい手法を提案する。
大規模なオフライントレーニングを必要とするディープネットワークとは異なり、当社のモデルは新たなデータを継続的に更新し、入力の変更に適応し、応答する。
実験により,第二言語習得が幼少期後期に生じた場合,臨界期以降の外国語学習に伴う課題が増幅され,知覚的狭化効果が再現されることが実証された。
関連論文リスト
- SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
大規模言語モデルにおけるコンテキスト内学習を実現するためのフレームワークを提案する。
メタモデルは、カスタマイズされたデモからなる自己教師型プロンプトで学ぶことができる。
実験の結果、SINCは様々な視覚言語タスクにおいて勾配に基づく手法よりも優れていた。
論文 参考訳(メタデータ) (2023-07-15T08:33:08Z) - Learning Cross-lingual Visual Speech Representations [108.68531445641769]
言語横断的な自己監督型視覚表現学習は、ここ数年、研究トピックとして成長している。
我々は最近提案したRAVEn(Raw Audio-Visual Speechs)フレームワークを用いて,未ラベルデータを用いた音声-視覚モデルの事前学習を行う。
1)データ量が多いマルチ言語モデルはモノリンガルモデルよりも優れているが、データの量を維持すると、モノリンガルモデルの性能が向上する傾向にある。
論文 参考訳(メタデータ) (2023-03-14T17:05:08Z) - Communication Drives the Emergence of Language Universals in Neural
Agents: Evidence from the Word-order/Case-marking Trade-off [3.631024220680066]
ニューラルエージェント言語学習通信フレームワーク(NeLLCom)を提案する。
我々はエージェントに特定のバイアスをハードコーディングすることなく、新しいフレームワークでトレードオフを複製することに成功しました。
論文 参考訳(メタデータ) (2023-01-30T17:22:33Z) - Leveraging Graph-based Cross-modal Information Fusion for Neural Sign
Language Translation [46.825957917649795]
手話 (SL) は聴覚障害者の母語であり、ほとんどの人が理解できない特別な視覚言語である。
動的グラフに基づくマルチモーダル特徴融合を用いたニューラルSLTモデルを提案する。
我々はまず,マルチモーダル情報を融合したグラフニューラルネットワークをニューラルネットワーク翻訳モデルに導入した。
論文 参考訳(メタデータ) (2022-11-01T15:26:22Z) - Dependency-based Mixture Language Models [53.152011258252315]
依存性に基づく混合言語モデルを紹介する。
より詳しくは、依存関係モデリングの新たな目的により、まずニューラルネットワークモデルを訓練する。
次に、前回の依存性モデリング確率分布と自己意図を混合することにより、次の確率を定式化する。
論文 参考訳(メタデータ) (2022-03-19T06:28:30Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Word Acquisition in Neural Language Models [0.38073142980733]
ニューラルネットワークモデルは,学習中に個々の単語を習得し,学習曲線を抽出し,600以上の単語の獲得年齢を推定する。
子どもや言語モデルでは, 具体性, 単語長, 語彙クラスの影響が顕著に異なることがわかった。
論文 参考訳(メタデータ) (2021-10-05T23:26:16Z) - Towards Zero-shot Language Modeling [90.80124496312274]
人間の言語学習に誘導的に偏りを持つニューラルモデルを構築した。
類型的に多様な訓練言語のサンプルからこの分布を推測する。
我々は、保留言語に対する遠隔監視として、追加の言語固有の側情報を利用する。
論文 参考訳(メタデータ) (2021-08-06T23:49:18Z) - Deep Sound Change: Deep and Iterative Learning, Convolutional Neural
Networks, and Language Change [0.0]
本稿では,深層学習と反復学習を組み合わせた音響変化をモデル化するための枠組みを提案する。
音響変化のいくつかの性質は、提案されたアーキテクチャから生じると論じている。
論文 参考訳(メタデータ) (2020-11-10T23:49:09Z) - Generative Adversarial Phonology: Modeling unsupervised phonetic and
phonological learning with neural networks [0.0]
音声データにおけるよく理解された依存関係に基づくディープニューラルネットワークのトレーニングは、内部表現の学習方法に関する新たな洞察を提供することができる。
本稿では, 音声の獲得を, 生成適応型ネットワークアーキテクチャにおけるランダム空間と生成した音声データ間の依存性としてモデル化することができることを論じる。
本稿では,音韻的・音韻的特性に対応するネットワークの内部表現を明らかにする手法を提案する。
論文 参考訳(メタデータ) (2020-06-06T20:31:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。