Line Graph Vietoris-Rips Persistence Diagram for Topological Graph Representation Learning
- URL: http://arxiv.org/abs/2412.17468v1
- Date: Mon, 23 Dec 2024 10:46:44 GMT
- Title: Line Graph Vietoris-Rips Persistence Diagram for Topological Graph Representation Learning
- Authors: Jaesun Shin, Eunjoo Jeon, Taewon Cho, Namkyeong Cho, Youngjune Gwon,
- Abstract summary: We introduce a novel edge filtration-based persistence diagram, named Topological Edge Diagram (TED)
TED is mathematically proven to preserve node embedding information as well as contain additional topological information.
We propose a neural network based algorithm, named Line Graph Vietoris-Rips (LGVR) Persistence Diagram, that extracts edge information by transforming a graph into its line graph.
- Score: 3.6881508872690825
- License:
- Abstract: While message passing graph neural networks result in informative node embeddings, they may suffer from describing the topological properties of graphs. To this end, node filtration has been widely used as an attempt to obtain the topological information of a graph using persistence diagrams. However, these attempts have faced the problem of losing node embedding information, which in turn prevents them from providing a more expressive graph representation. To tackle this issue, we shift our focus to edge filtration and introduce a novel edge filtration-based persistence diagram, named Topological Edge Diagram (TED), which is mathematically proven to preserve node embedding information as well as contain additional topological information. To implement TED, we propose a neural network based algorithm, named Line Graph Vietoris-Rips (LGVR) Persistence Diagram, that extracts edge information by transforming a graph into its line graph. Through LGVR, we propose two model frameworks that can be applied to any message passing GNNs, and prove that they are strictly more powerful than Weisfeiler-Lehman type colorings. Finally we empirically validate superior performance of our models on several graph classification and regression benchmarks.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Edge-Wise Graph-Instructed Neural Networks [0.0]
We discuss the limitations of the Graph-Instructed (GI) layer, and we formalize a novel edge-wise GI (EWGI) layer.
We provide numerical evidence that EWGINNs perform better than GINNs over some graph-structured input data.
arXiv Detail & Related papers (2024-09-12T13:05:28Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - A Topology-aware Graph Coarsening Framework for Continual Graph Learning [8.136809136959302]
Continual learning on graphs tackles the problem of training a graph neural network (GNN) where graph data arrive in a streaming fashion.
Traditional continual learning strategies such as Experience Replay can be adapted to streaming graphs.
We propose TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning framework.
arXiv Detail & Related papers (2024-01-05T22:22:13Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS)
BGCN-NRWS uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.
arXiv Detail & Related papers (2021-12-14T20:58:27Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Learning Graph Representations [0.0]
Graph Neural Networks (GNNs) are efficient ways to get insight into large dynamic graph datasets.
In this paper, we discuss the graph convolutional neural networks graph autoencoders and Social-temporal graph neural networks.
arXiv Detail & Related papers (2021-02-03T12:07:55Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z) - Geom-GCN: Geometric Graph Convolutional Networks [15.783571061254847]
We propose a novel geometric aggregation scheme for graph neural networks to overcome the two weaknesses.
The proposed aggregation scheme is permutation-invariant and consists of three modules, node embedding, structural neighborhood, and bi-level aggregation.
We also present an implementation of the scheme in graph convolutional networks, termed Geom-GCN, to perform transductive learning on graphs.
arXiv Detail & Related papers (2020-02-13T00:03:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.