論文の概要: Enhancing Cancer Diagnosis with Explainable & Trustworthy Deep Learning Models
- arxiv url: http://arxiv.org/abs/2412.17527v1
- Date: Mon, 23 Dec 2024 12:50:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 15:59:02.288528
- Title: Enhancing Cancer Diagnosis with Explainable & Trustworthy Deep Learning Models
- Title(参考訳): 説明可能な,信頼できる深層学習モデルによる癌診断の強化
- Authors: Badaru I. Olumuyiwa, The Anh Han, Zia U. Shamszaman,
- Abstract要約: 本研究は, 説明可能な人工知能(XAI)と深層学習技術を用いて, がんの診断と予測に革新的なアプローチを提案する。
我々の研究は、意思決定プロセスに関する正確な結果と明確な洞察を提供するAIモデルを開発した。
このモデルの応用は、がんの診断を超えて、医学的な意思決定の様々な側面を変え、世界中の数百万人の命を救う可能性がある。
- 参考スコア(独自算出の注目度): 1.1060425537315088
- License:
- Abstract: This research presents an innovative approach to cancer diagnosis and prediction using explainable Artificial Intelligence (XAI) and deep learning techniques. With cancer causing nearly 10 million deaths globally in 2020, early and accurate diagnosis is crucial. Traditional methods often face challenges in cost, accuracy, and efficiency. Our study develops an AI model that provides precise outcomes and clear insights into its decision-making process, addressing the "black box" problem of deep learning models. By employing XAI techniques, we enhance interpretability and transparency, building trust among healthcare professionals and patients. Our approach leverages neural networks to analyse extensive datasets, identifying patterns for cancer detection. This model has the potential to revolutionise diagnosis by improving accuracy, accessibility, and clarity in medical decision-making, possibly leading to earlier detection and more personalised treatment strategies. Furthermore, it could democratise access to high-quality diagnostics, particularly in resource-limited settings, contributing to global health equity. The model's applications extend beyond cancer diagnosis, potentially transforming various aspects of medical decision-making and saving millions of lives worldwide.
- Abstract(参考訳): 本研究は, 説明可能な人工知能(XAI)と深層学習技術を用いて, がんの診断と予測に革新的なアプローチを提案する。
がんは2020年に世界中で1000万人近くが死亡しているため、早期かつ正確な診断が不可欠だ。
伝統的な手法は、しばしばコスト、正確性、効率性の課題に直面します。
我々の研究は、ディープラーニングモデルの「ブラックボックス」問題に対処し、意思決定プロセスに関する正確な結果と明確な洞察を提供するAIモデルを開発した。
XAI技術を利用することで,解釈可能性と透明性を高め,医療従事者と患者間の信頼を築く。
我々のアプローチは、ニューラルネットワークを利用して広範なデータセットを分析し、がん検出のためのパターンを特定します。
このモデルは、医学的意思決定における正確性、アクセシビリティ、明快さを改善し、早期発見とよりパーソナライズされた治療戦略に繋がる可能性を秘めている。
さらに、高品質な診断へのアクセス、特にリソース制限された環境でのアクセスを民主化し、グローバルなヘルスエクイティに寄与する可能性がある。
このモデルの応用は、がんの診断を超えて、医学的意思決定の様々な側面を変え、世界中の数百万人の命を救う可能性がある。
関連論文リスト
- Breast Cancer Diagnosis: A Comprehensive Exploration of Explainable Artificial Intelligence (XAI) Techniques [38.321248253111776]
乳がんの診断・診断における説明可能な人工知能(XAI)技術の適用について検討する。
複雑なAIモデルと実用的な医療アプリケーションの間のギャップを埋めることにおけるXAIの可能性を強調することを目的としている。
論文 参考訳(メタデータ) (2024-06-01T18:50:03Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
本研究では,畳み込みニューラルネットワーク(CNN)と説明可能な人工知能(XAI)を組み合わせて乳がんの診断を高度化するための統合フレームワークを提案する。
この方法論は、データセットの制限に対処するために、精巧なデータ前処理パイプラインと高度なデータ拡張技術を含んでいる。
本研究の焦点は,モデル予測の解釈におけるXAIの有効性を評価することである。
論文 参考訳(メタデータ) (2024-04-05T05:00:21Z) - An Interpretable Deep Learning Approach for Skin Cancer Categorization [0.0]
我々は、皮膚がん検出の問題に対処するために、現代のディープラーニング手法と説明可能な人工知能(XAI)アプローチを使用する。
皮膚病変の分類には,XceptionNet,EfficientNetV2S,InceptionResNetV2,EfficientNetV2Mの4つの最先端事前訓練モデルを用いる。
我々の研究は、ディープラーニングと説明可能な人工知能(XAI)が皮膚がんの診断をどのように改善するかを示している。
論文 参考訳(メタデータ) (2023-12-17T12:11:38Z) - A Foundational Framework and Methodology for Personalized Early and
Timely Diagnosis [84.6348989654916]
本稿では,早期診断とタイムリー診断のための基礎的枠組みを提案する。
診断過程を概説する決定論的アプローチに基づいている。
機械学習と統計手法を統合し、最適なパーソナライズされた診断経路を推定する。
論文 参考訳(メタデータ) (2023-11-26T14:42:31Z) - Designing a Deep Learning-Driven Resource-Efficient Diagnostic System
for Metastatic Breast Cancer: Reducing Long Delays of Clinical Diagnosis and
Improving Patient Survival in Developing Countries [8.024420292033492]
症状の初期発生と診断の受入の遅延は15カ月以上延長する可能性がある。
本研究は,転移性乳癌に対する深層学習に基づく診断システムを開発した。
MobileNetV2診断モデルは、正常な細胞の大部分に埋め込まれた非常に小さな癌ノードを特定することができる。
論文 参考訳(メタデータ) (2023-08-04T03:09:48Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - XAI Renaissance: Redefining Interpretability in Medical Diagnostic
Models [0.0]
XAIルネッサンスは、医療診断モデルの解釈可能性を再定義することを目的としている。
XAI技術は、医療専門家にこれらのモデルを正確で信頼性の高い診断に理解し、信頼し、効果的に活用することを可能にする。
論文 参考訳(メタデータ) (2023-06-02T16:42:20Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Deep learning methods for drug response prediction in cancer:
predominant and emerging trends [50.281853616905416]
がんを研究・治療するための計算予測モデルをエクスプロイトすることは、薬物開発の改善と治療計画のパーソナライズドデザインにおいて大きな可能性を秘めている。
最近の研究の波は、ディープラーニング手法を用いて、薬物治療に対するがん反応を予測するという有望な結果を示している。
このレビューは、この分野の現状をよりよく理解し、主要な課題と将来性のあるソリューションパスを特定します。
論文 参考訳(メタデータ) (2022-11-18T03:26:31Z) - AutoPrognosis 2.0: Democratizing Diagnostic and Prognostic Modeling in
Healthcare with Automated Machine Learning [72.2614468437919]
本稿では,診断・予後モデルを開発するための機械学習フレームワークAutoPrognosis 2.0を提案する。
我々は,英国バイオバンクを用いた糖尿病の予後リスクスコアを構築するための図解的アプリケーションを提供する。
我々のリスクスコアはWebベースの意思決定支援ツールとして実装されており、世界中の患者や臨床医がアクセスできる。
論文 参考訳(メタデータ) (2022-10-21T16:31:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。