Interplay between dressed and strong-axial-field states in Nitrogen-Vacancy centers for quantum sensing and computation
- URL: http://arxiv.org/abs/2412.17608v1
- Date: Mon, 23 Dec 2024 14:28:19 GMT
- Title: Interplay between dressed and strong-axial-field states in Nitrogen-Vacancy centers for quantum sensing and computation
- Authors: G. Zanelli, E. Moreva, E. Bernardi, E. Losero, S. Ditalia Tchernij, J. Forneris, Ž. Pastuović, P. Traina, I. P. Degiovanni, M. Genovese,
- Abstract summary: The Nitrogen-Vacancy (NV) center in diamond is an intriguing electronic spin system with applications in quantum radiometry, sensing and computation.
This paper presents a study of Free Induction Decay (FID) measurements performed on a NV center ensemble in the presence of strain and weak magnetic field.
The simultaneous detection of dressed states and unbalanced superpositions of strong-axial field states in a single FID measurement is shown.
- Score: 0.0
- License:
- Abstract: The Nitrogen-Vacancy (NV) center in diamond is an intriguing electronic spin system with applications in quantum radiometry, sensing and computation. In those experiments, a bias magnetic field is commonly applied along the NV symmetry axis to eliminate the triplet ground state manifold's degeneracy (S=1). In this configuration, the eigenvectors of the NV spin's projection along its axis are called strong-axial field states. Conversely, in some experiments a weak magnetic field is applied orthogonal to the NV symmetry axis, leading to eigenstates that are balanced linear superpositions of strong-axial field states, referred to as dressed states. The latter are sensitive to environmental magnetic noise at the second order, allowing to perform magnetic field protected measurements while providing increased coherence times. However, if a small axial magnetic field is added in this regime, the linear superposition of strong-axial field states becomes unbalanced. This paper presents a comprehensive study of Free Induction Decay (FID) measurements performed on a NV center ensemble in the presence of strain and weak orthogonal magnetic field, as a function of a small magnetic field applied along the NV symmetry axis. The simultaneous detection of dressed states and unbalanced superpositions of strong-axial field states in a single FID measurement is shown, gaining insight about coherence time, nuclear spin and the interplay between temperature and magnetic field sensitivity. The discussion concludes by describing how the simultaneous presence of magnetically-sensitive and -insensitive states opens up appealing possibilities for both sensing and quantum computation applications.
Related papers
- Single and double quantum transitions in spin-mixed states under
photo-excitation [0.0]
Electronic spins associated with the Nitrogen-Vacancy (NV) center in diamond offer an opportunity to study spin-related phenomena.
We study both single- and double-quantum transitions (SQT and DQT) in NV centers between spin-mixed states.
Such detailed understanding of spin-mixed states in NV centers under photo-excitation can help greatly in realizing NV-diamond platform's potential.
arXiv Detail & Related papers (2023-06-30T10:42:54Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Adiabaticity of spin dynamics in diamond nitrogen vacancy centers in
time-dependent magnetic fields [0.0]
We study the spin dynamics of diamond nitrogen vacancy centers in an oscillating magnetic field along the symmetry axis of the NV.
The coupling between the otherwise degenerate Zeeman levels $|M_S=pm1rangle$ due to strain and electric fields is responsible for a Landau-Zener process near the pseudo-crossing of the adiabatic energy levels.
arXiv Detail & Related papers (2020-11-15T19:25:27Z) - Nuclear Spin Assisted Magnetic Field Angle Sensing [0.0]
Quantum sensing exploits the strong sensitivity of quantum systems to measure small external signals.
The nitrogen-vacancy center in diamond is one of the most promising platforms for real-world quantum sensing applications.
arXiv Detail & Related papers (2020-10-08T18:24:16Z) - Quantum Sensing of Spin Fluctuations of Magnetic Insulator Films with
Perpendicular Anisotropy [0.0]
Nitrogen vacancy (NV) centers are applied to emerging quantum sensing, imaging, and network efforts.
We report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization.
arXiv Detail & Related papers (2020-09-07T04:24:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.