Rate of Model Collapse in Recursive Training
- URL: http://arxiv.org/abs/2412.17646v1
- Date: Mon, 23 Dec 2024 15:21:50 GMT
- Title: Rate of Model Collapse in Recursive Training
- Authors: Ananda Theertha Suresh, Andrew Thangaraj, Aditya Nanda Kishore Khandavally,
- Abstract summary: We ask how fast model collapse occurs for some well-studied distribution families under maximum likelihood (ML or near ML) estimation.
Surprisingly, even for fundamental distributions such as discrete and Gaussian distributions, the exact rate of model collapse is unknown.
Our results show that for discrete distributions, the time to forget a word is approximately linearly dependent on the number of times it occurred in the original corpus.
- Score: 13.722324504719282
- License:
- Abstract: Given the ease of creating synthetic data from machine learning models, new models can be potentially trained on synthetic data generated by previous models. This recursive training process raises concerns about the long-term impact on model quality. As models are recursively trained on generated data from previous rounds, their ability to capture the nuances of the original human-generated data may degrade. This is often referred to as \emph{model collapse}. In this work, we ask how fast model collapse occurs for some well-studied distribution families under maximum likelihood (ML or near ML) estimation during recursive training. Surprisingly, even for fundamental distributions such as discrete and Gaussian distributions, the exact rate of model collapse is unknown. In this work, we theoretically characterize the rate of collapse in these fundamental settings and complement it with experimental evaluations. Our results show that for discrete distributions, the time to forget a word is approximately linearly dependent on the number of times it occurred in the original corpus, and for Gaussian models, the standard deviation reduces to zero roughly at $n$ iterations, where $n$ is the number of samples at each iteration. Both of these findings imply that model forgetting, at least in these simple distributions under near ML estimation with many samples, takes a long time.
Related papers
- Universality in Transfer Learning for Linear Models [18.427215139020625]
We study the problem of transfer learning in linear models for both regression and binary classification.
We provide an exact and rigorous analysis and relate generalization errors (in regression) and classification errors (in binary classification) for the pretrained and fine-tuned models.
arXiv Detail & Related papers (2024-10-03T03:09:09Z) - Ablation Based Counterfactuals [7.481286710933861]
Ablation Based Counterfactuals (ABC) is a method of performing counterfactual analysis that relies on model ablation rather than model retraining.
We demonstrate how we can construct a model like this using an ensemble of diffusion models.
We then use this model to study the limits of training data attribution by enumerating full counterfactual landscapes.
arXiv Detail & Related papers (2024-06-12T06:22:51Z) - How Bad is Training on Synthetic Data? A Statistical Analysis of Language Model Collapse [9.59833542807268]
Model collapse occurs when new models are trained on synthetic data generated from previously trained models.
We show that model collapse cannot be avoided when training solely on synthetic data.
We estimate a maximal amount of synthetic data below which model collapse can eventually be avoided.
arXiv Detail & Related papers (2024-04-07T22:15:13Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
We study the learning dynamics of generative models that are fed back their own produced content in addition to their original training dataset.
We show that, unless a sufficient amount of external data is introduced at each iteration, any non-trivial temperature leads the model to degenerate.
arXiv Detail & Related papers (2024-04-02T21:51:39Z) - Is Model Collapse Inevitable? Breaking the Curse of Recursion by Accumulating Real and Synthetic Data [49.73114504515852]
We show that replacing the original real data by each generation's synthetic data does indeed tend towards model collapse.
We demonstrate that accumulating the successive generations of synthetic data alongside the original real data avoids model collapse.
arXiv Detail & Related papers (2024-04-01T18:31:24Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Learning Defect Prediction from Unrealistic Data [57.53586547895278]
Pretrained models of code have become popular choices for code understanding and generation tasks.
Such models tend to be large and require commensurate volumes of training data.
It has become popular to train models with far larger but less realistic datasets, such as functions with artificially injected bugs.
Models trained on such data tend to only perform well on similar data, while underperforming on real world programs.
arXiv Detail & Related papers (2023-11-02T01:51:43Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Variational Bayesian Unlearning [54.26984662139516]
We study the problem of approximately unlearning a Bayesian model from a small subset of the training data to be erased.
We show that it is equivalent to minimizing an evidence upper bound which trades off between fully unlearning from erased data vs. not entirely forgetting the posterior belief.
In model training with VI, only an approximate (instead of exact) posterior belief given the full data can be obtained, which makes unlearning even more challenging.
arXiv Detail & Related papers (2020-10-24T11:53:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.