Ablation Based Counterfactuals
- URL: http://arxiv.org/abs/2406.07908v1
- Date: Wed, 12 Jun 2024 06:22:51 GMT
- Title: Ablation Based Counterfactuals
- Authors: Zheng Dai, David K Gifford,
- Abstract summary: Ablation Based Counterfactuals (ABC) is a method of performing counterfactual analysis that relies on model ablation rather than model retraining.
We demonstrate how we can construct a model like this using an ensemble of diffusion models.
We then use this model to study the limits of training data attribution by enumerating full counterfactual landscapes.
- Score: 7.481286710933861
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models are a class of generative models that generate high-quality samples, but at present it is difficult to characterize how they depend upon their training data. This difficulty raises scientific and regulatory questions, and is a consequence of the complexity of diffusion models and their sampling process. To analyze this dependence, we introduce Ablation Based Counterfactuals (ABC), a method of performing counterfactual analysis that relies on model ablation rather than model retraining. In our approach, we train independent components of a model on different but overlapping splits of a training set. These components are then combined into a single model, from which the causal influence of any training sample can be removed by ablating a combination of model components. We demonstrate how we can construct a model like this using an ensemble of diffusion models. We then use this model to study the limits of training data attribution by enumerating full counterfactual landscapes, and show that single source attributability diminishes with increasing training data size. Finally, we demonstrate the existence of unattributable samples.
Related papers
- Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
We study the learning dynamics of generative models that are fed back their own produced content in addition to their original training dataset.
We show that, unless a sufficient amount of external data is introduced at each iteration, any non-trivial temperature leads the model to degenerate.
arXiv Detail & Related papers (2024-04-02T21:51:39Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - The Emergence of Reproducibility and Generalizability in Diffusion Models [10.188731323681575]
Given the same starting noise input and a deterministic sampler, different diffusion models often yield remarkably similar outputs.
We show that diffusion models are learning distinct distributions affected by the training data size.
This valuable property generalizes to many variants of diffusion models, including those for conditional use, solving inverse problems, and model fine-tuning.
arXiv Detail & Related papers (2023-10-08T19:02:46Z) - Training Data Attribution for Diffusion Models [1.1733780065300188]
We propose a novel solution that reveals how training data influence the output of diffusion models through the use of ensembles.
In our approach individual models in an encoded ensemble are trained on carefully engineered splits of the overall training data to permit the identification of influential training examples.
The resulting model ensembles enable efficient ablation of training data influence, allowing us to assess the impact of training data on model outputs.
arXiv Detail & Related papers (2023-06-03T18:36:12Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.