Establishing Reality-Virtuality Interconnections in Urban Digital Twins for Superior Intelligent Road Inspection
- URL: http://arxiv.org/abs/2412.17699v1
- Date: Mon, 23 Dec 2024 16:31:29 GMT
- Title: Establishing Reality-Virtuality Interconnections in Urban Digital Twins for Superior Intelligent Road Inspection
- Authors: Yikang Zhang, Chuang-Wei Liu, Jiahang Li, Yingbing Chen, Jie Cheng, Rui Fan,
- Abstract summary: Road inspection is essential for ensuring road maintenance and traffic safety.
Traditional methods, which rely on manual evaluations, are labor-intensive, costly, and time-consuming.
We propose a system based on Urban Digital Twin (UDT) technology for intelligent road inspection.
- Score: 8.677223673536092
- License:
- Abstract: Road inspection is essential for ensuring road maintenance and traffic safety, as road defects gradually emerge and compromise road functionality. Traditional methods, which rely on manual evaluations, are labor-intensive, costly, and time-consuming. Although data-driven approaches are gaining traction, the scarcity and spatial sparsity of road defects in the real world pose significant challenges in acquiring high-quality datasets. Existing simulators designed to generate detailed synthetic driving scenes, however, lack models for road defects. Furthermore, advanced driving tasks involving interactions with road surfaces, such as planning and control in defective areas, remain underexplored. To address these limitations, we propose a system based on Urban Digital Twin (UDT) technology for intelligent road inspection. First, hierarchical road models are constructed from real-world driving data, creating highly detailed representations of road defect structures and surface elevations. Next, digital road twins are generated to create simulation environments for comprehensive analysis and evaluation. These scenarios are subsequently imported into a simulator to enable both data acquisition and physical simulation. Experimental results demonstrate that driving tasks, including perception and decision-making, can be significantly improved using the high-fidelity road defect scenes generated by our system.
Related papers
- DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation [54.02069690134526]
We propose DrivingSphere, a realistic and closed-loop simulation framework.
Its core idea is to build 4D world representation and generate real-life and controllable driving scenarios.
By providing a dynamic and realistic simulation environment, DrivingSphere enables comprehensive testing and validation of autonomous driving algorithms.
arXiv Detail & Related papers (2024-11-18T03:00:33Z) - DiffRoad: Realistic and Diverse Road Scenario Generation for Autonomous Vehicle Testing [12.964224581549281]
DiffRoad is a novel diffusion model designed to produce controllable and high-fidelity 3D road scenarios.
Road-UNet architecture optimize the balance between backbone and skip connections for high-realism scenario generation.
generated scenarios can be fully automated into the OpenDRIVE format.
arXiv Detail & Related papers (2024-11-14T13:56:02Z) - Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
arXiv Detail & Related papers (2024-11-04T09:21:00Z) - SmartRSD: An Intelligent Multimodal Approach to Real-Time Road Surface Detection for Safe Driving [4.22695582100076]
We introduce a multimodal approach for the automated detection of road surface conditions by integrating audio and images.
Our findings highlight the potential of integrating auditory and visual cues for enhancing road safety and minimizing accident risks.
arXiv Detail & Related papers (2024-06-14T15:38:21Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Street-View Image Generation from a Bird's-Eye View Layout [95.36869800896335]
Bird's-Eye View (BEV) Perception has received increasing attention in recent years.
Data-driven simulation for autonomous driving has been a focal point of recent research.
We propose BEVGen, a conditional generative model that synthesizes realistic and spatially consistent surrounding images.
arXiv Detail & Related papers (2023-01-11T18:39:34Z) - Deep Learning based Computer Vision Methods for Complex Traffic
Environments Perception: A Review [22.53793239186955]
This paper conducted an extensive literature review on the applications of computer vision in intelligent transportation systems (ITS) and autonomous driving (AD)
The data challenges are associated with the collection and labeling of training data and its relevance to real world conditions, bias inherent in datasets, the high volume of data needed to be processed, and privacy concerns.
Deep learning (DL) models are commonly too complex for real-time processing on embedded hardware, lack explainability and generalizability, and are hard to test in real-world settings.
arXiv Detail & Related papers (2022-11-09T05:16:01Z) - VTGNet: A Vision-based Trajectory Generation Network for Autonomous
Vehicles in Urban Environments [26.558394047144006]
We develop an uncertainty-aware end-to-end trajectory generation method based on imitation learning.
Under various weather and lighting conditions, our network can reliably generate trajectories in different urban environments.
The proposed method achieves better cross-scene/platform driving results than the state-of-the-art (SOTA) end-to-end control method.
arXiv Detail & Related papers (2020-04-27T06:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.