Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations
- URL: http://arxiv.org/abs/2411.01909v1
- Date: Mon, 04 Nov 2024 09:21:00 GMT
- Title: Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations
- Authors: Michael Kurenkov, Sajad Marvi, Julian Schmidt, Christoph B. Rist, Alessandro Canevaro, Hang Yu, Julian Jordan, Georg Schildbach, Abhinav Valada,
- Abstract summary: Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices.
This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets.
- Score: 48.924085579865334
- License:
- Abstract: The increasing interest in autonomous driving systems has highlighted the need for an in-depth analysis of human driving behavior in diverse scenarios. Analyzing human data is crucial for developing autonomous systems that replicate safe driving practices and ensure seamless integration into human-dominated environments. This paper presents a comparative evaluation of human compliance with traffic and safety rules across multiple trajectory prediction datasets, including Argoverse 2, nuPlan, Lyft, and DeepUrban. By defining and leveraging existing safety and behavior-related metrics, such as time to collision, adherence to speed limits, and interactions with other traffic participants, we aim to provide a comprehensive understanding of each datasets strengths and limitations. Our analysis focuses on the distribution of data samples, identifying noise, outliers, and undesirable behaviors exhibited by human drivers in both the training and validation sets. The results underscore the need for applying robust filtering techniques to certain datasets due to high levels of noise and the presence of such undesirable behaviors.
Related papers
- D2E-An Autonomous Decision-making Dataset involving Driver States and Human Evaluation [6.890077875318333]
Driver to Evaluation dataset (D2E) is an autonomous decision-making dataset.
It contains data on driver states, vehicle states, environmental situations, and evaluation scores from human reviewers.
D2E contains over 1100 segments of interactive driving case data covering from human driver factor to evaluation results.
arXiv Detail & Related papers (2024-04-12T21:29:18Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
We introduce SAFE-SIM, a controllable closed-loop safety-critical simulation framework.
Our approach yields two distinct advantages: 1) generating realistic long-tail safety-critical scenarios that closely reflect real-world conditions, and 2) providing controllable adversarial behavior for more comprehensive and interactive evaluations.
We validate our framework empirically using the nuScenes and nuPlan datasets across multiple planners, demonstrating improvements in both realism and controllability.
arXiv Detail & Related papers (2023-12-31T04:14:43Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
We propose an unsupervised way to predict self-driving attention by uncertainty modeling and driving knowledge integration.
Results show equivalent or even more impressive performance compared to fully-supervised state-of-the-art approaches.
arXiv Detail & Related papers (2023-03-17T00:28:33Z) - Augmented Driver Behavior Models for High-Fidelity Simulation Study of
Crash Detection Algorithms [2.064612766965483]
We present a simulation platform for a hybrid transportation system that includes both human-driven and automated vehicles.
We decompose the human driving task and offer a modular approach to simulating a large-scale traffic scenario.
We analyze a large driving dataset to extract expressive parameters that would best describe different driving characteristics.
arXiv Detail & Related papers (2022-08-10T19:59:16Z) - Exploring the trade off between human driving imitation and safety for
traffic simulation [0.34410212782758043]
We show that a trade-off exists between imitating human driving and maintaining safety when learning driving policies.
We propose a multi objective learning algorithm (MOPPO) that improves both objectives together.
arXiv Detail & Related papers (2022-08-09T14:30:19Z) - Learning Latent Traits for Simulated Cooperative Driving Tasks [10.009803620912777]
We build a framework capable of capturing a compact latent representation of the human in terms of their behavior and preferences.
We then build a lightweight simulation environment, HMIway-env, for modelling one form of distracted driving behavior.
We finally use this environment to quantify both the ability to discriminate drivers and the effectiveness of intervention policies.
arXiv Detail & Related papers (2022-07-20T02:27:18Z) - TRiPOD: Human Trajectory and Pose Dynamics Forecasting in the Wild [77.59069361196404]
TRiPOD is a novel method for predicting body dynamics based on graph attentional networks.
To incorporate a real-world challenge, we learn an indicator representing whether an estimated body joint is visible/invisible at each frame.
Our evaluation shows that TRiPOD outperforms all prior work and state-of-the-art specifically designed for each of the trajectory and pose forecasting tasks.
arXiv Detail & Related papers (2021-04-08T20:01:00Z) - Generating and Characterizing Scenarios for Safety Testing of Autonomous
Vehicles [86.9067793493874]
We propose efficient mechanisms to characterize and generate testing scenarios using a state-of-the-art driving simulator.
We use our method to characterize real driving data from the Next Generation Simulation (NGSIM) project.
We rank the scenarios by defining metrics based on the complexity of avoiding accidents and provide insights into how the AV could have minimized the probability of incurring an accident.
arXiv Detail & Related papers (2021-03-12T17:00:23Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
We present an online framework for safe crowd-robot interaction based on risk-sensitive optimal control, wherein the risk is modeled by the entropic risk measure.
Our modular approach decouples the crowd-robot interaction into learning-based prediction and model-based control.
A simulation study and a real-world experiment show that the proposed framework can accomplish safe and efficient navigation while avoiding collisions with more than 50 humans in the scene.
arXiv Detail & Related papers (2020-09-12T02:02:52Z) - Deep Reinforcement Learning for Human-Like Driving Policies in Collision
Avoidance Tasks of Self-Driving Cars [1.160208922584163]
We introduce a model-free, deep reinforcement learning approach to generate automated human-like driving policies.
We study a static obstacle avoidance task on a two-lane highway road in simulation.
We demonstrate that our approach leads to human-like driving policies.
arXiv Detail & Related papers (2020-06-07T18:20:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.