Third-Order Exceptional Point in Non-Hermitian Spin-Orbit-Coupled cold atoms
- URL: http://arxiv.org/abs/2412.17705v2
- Date: Tue, 21 Jan 2025 13:36:30 GMT
- Title: Third-Order Exceptional Point in Non-Hermitian Spin-Orbit-Coupled cold atoms
- Authors: Yu-Jun Liu, Ka Kwan Pak, Peng Ren, Mengbo Guo, Entong Zhao, Chengdong He, Gyu-Boong Jo,
- Abstract summary: We describe a symmetry-protected three-level non-Hermitian system with the dissipative spin-orbit-coupled (SOC) fermions.
EP3 emerges when both the eigenvalues and eigenstates of the system collapse into one.
We highlight the enhanced sensitivity to the external perturbation of EP3 with cubic-root energy dispersion.
- Score: 1.4514037931268404
- License:
- Abstract: Exceptional points (EPs) has seen substantial advances in both experiment and theory. However, in quantum systems, higher-order exceptional points remain of great interest and possess numerous intriguing properties yet to be fully explored. Here, we describe a \emph{PT} symmetry-protected three-level non-Hermitian system with the dissipative spin-orbit-coupled (SOC) fermions in which a third-order exceptional point (EP3) emerges when both the eigenvalues and eigenstates of the system collapse into one. The band structure and its spin dynamics are explored for $^{173}$Yb fermions. We highlight the enhanced sensitivity to the external perturbation of EP3 with cubic-root energy dispersion. Additionally, we investigate the second-order exceptional point (EP2) with square-root energy dispersion in a three-level quantum system with the absence of parity symmetry, which proves that the enhanced sensitivity closely relates to the symmetries of the NH system. Furthermore, we analyze the encircling behavior of EP3 in terms of the adiabatic limit and the nonadiabatic dynamics and discover some different results from that of EP2.
Related papers
- Exceptional-Point-Induced Nonequilibrium Entanglement Dynamics in Bosonic Networks [0.0]
We investigate how exceptional points (EPs) control multimode entanglement in bosonic chains.
Our findings provide a pathway to leveraging EPs for entanglement control and exhibit the potential of non-Hermitian physics in advancing quantum technologies.
arXiv Detail & Related papers (2025-02-07T03:52:29Z) - Topological eigenvalues braiding and quantum state transfer near a third-order exceptional point [19.317159837094202]
We experimentally investigate the eigenvalues braiding and state transfer arising from the encirclement of exceptional points (EP) in a non-Hermitian quantum system.
Our findings offer insights into understanding non-Hermitian topological structures and the manipulation of quantum states through dynamic operations.
arXiv Detail & Related papers (2024-12-19T11:02:49Z) - Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully adjustable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.
We show a quantum simulator system that consists of a continuously driven Kerr parametric oscillator with a third order non-linearity that can be operated in the quantum regime to create a fully asymmetric double-well.
Our work is a first step for the development of analog molecule simulators of proton transfer reactions based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - Exceptional point and hysteresis trajectories in cold Rydberg atomic gases [33.90303571473806]
Long-range interactions induce an additional dissipation channel, resulting in non-Hermitian many-body dynamics.
Here, we report experimental observation of interaction-induced exceptional points in cold Rydberg atomic gases.
arXiv Detail & Related papers (2024-08-06T11:35:06Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Measuring topological invariants for higher-order exceptional points in quantum three-mode systems [1.9334835720031431]
Experimental characterizations of exceptional topological invariants have been restricted to second-order EPs in classical or semiclassical systems.
We here propose an NH multi-mode system with higher-order EPs, each of which is underlain by a multifold-degenerate multipartite entangled eigenstate.
Our results extend research of exceptional topology to fully quantum-mechanical models with multipartite entangled eigenstates.
arXiv Detail & Related papers (2024-02-05T09:51:01Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Experimental Simulation of Symmetry-Protected Higher-Order Exceptional
Points with Single Photons [8.82526178604718]
We experimentally simulate two-dimensional topological NH band structures using single-photon interferometry.
We observe topologically stable third-order EPs obtained by tuning only two real parameters in the presence of symmetry.
Our work reveals the abundant and conceptually richer higher-order EPs protected by symmetries.
arXiv Detail & Related papers (2023-03-21T13:22:43Z) - Higher-order exceptional point in a blue-detuned non-Hermitian cavity
optomechanical system [5.001077638364239]
We propose a non-Hermitian three-mode optomechanical system in the blue-sideband regime for predicting the third-order EP (EP3)
For the gain (loss) MR, we find only two degenerate EP3s or EP2s can be predicted by tuning enhanced coupling strength.
Our proposal provides a potential way to predict higher-order EPs or multiple EP2s and study multimode quantum squeezing around EPs.
arXiv Detail & Related papers (2022-05-15T05:20:59Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Exponentially-enhanced quantum sensing with non-Hermitian lattice
dynamics [77.34726150561087]
We show that certain asymmetric non-Hermitian tight-binding models with a $mathbbZ$ symmetry yield a pronounced sensing advantage.
Our setup is directly compatible with a variety of quantum optical and superconducting circuit platforms.
arXiv Detail & Related papers (2020-04-01T17:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.