Third-Order Exceptional Point in Non-Hermitian Spin-Orbit-Coupled cold atoms
- URL: http://arxiv.org/abs/2412.17705v2
- Date: Tue, 21 Jan 2025 13:36:30 GMT
- Title: Third-Order Exceptional Point in Non-Hermitian Spin-Orbit-Coupled cold atoms
- Authors: Yu-Jun Liu, Ka Kwan Pak, Peng Ren, Mengbo Guo, Entong Zhao, Chengdong He, Gyu-Boong Jo,
- Abstract summary: We describe a symmetry-protected three-level non-Hermitian system with the dissipative spin-orbit-coupled (SOC) fermions.<n>EP3 emerges when both the eigenvalues and eigenstates of the system collapse into one.<n>We highlight the enhanced sensitivity to the external perturbation of EP3 with cubic-root energy dispersion.
- Score: 1.4514037931268404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Exceptional points (EPs) has seen substantial advances in both experiment and theory. However, in quantum systems, higher-order exceptional points remain of great interest and possess numerous intriguing properties yet to be fully explored. Here, we describe a \emph{PT} symmetry-protected three-level non-Hermitian system with the dissipative spin-orbit-coupled (SOC) fermions in which a third-order exceptional point (EP3) emerges when both the eigenvalues and eigenstates of the system collapse into one. The band structure and its spin dynamics are explored for $^{173}$Yb fermions. We highlight the enhanced sensitivity to the external perturbation of EP3 with cubic-root energy dispersion. Additionally, we investigate the second-order exceptional point (EP2) with square-root energy dispersion in a three-level quantum system with the absence of parity symmetry, which proves that the enhanced sensitivity closely relates to the symmetries of the NH system. Furthermore, we analyze the encircling behavior of EP3 in terms of the adiabatic limit and the nonadiabatic dynamics and discover some different results from that of EP2.
Related papers
- Higher-order exceptional points in a non-reciprocal waveguide beam splitter [1.5845117761091052]
We analytically derive eigenvalues and numerically demonstrate the formation of exceptional points (EPs) in non-Hermitian systems.
Our results open new pathways for realizing higher-order EPs in non-reciprocal open quantum systems.
arXiv Detail & Related papers (2025-03-27T12:38:58Z) - Enantiosensitive positions of exceptional points in open chiral systems [39.58317527488534]
We show that exceptional points can be enantiosenstive, enabling a new type of control over topological and chiral properties of non-Hermitian open chiral systems.
Our results combine high enantiosensitivity with topological robustness in chiral discrimination and separation, paving the way for new approaches in the control of non-Hermitian and chiral phenomena.
arXiv Detail & Related papers (2025-02-26T09:20:08Z) - Topological eigenvalues braiding and quantum state transfer near a third-order exceptional point [19.317159837094202]
We experimentally investigate the eigenvalues braiding and state transfer arising from the encirclement of exceptional points (EP) in a non-Hermitian quantum system.<n>Our findings offer insights into understanding non-Hermitian topological structures and the manipulation of quantum states through dynamic operations.
arXiv Detail & Related papers (2024-12-19T11:02:49Z) - Topological transitions in quantum jump dynamics: Hidden exceptional points [45.58759752275849]
Phenomena associated with exceptional points (EPs) have been extensively studied in relation to superconducting circuits.
We consider a monitored three level system and find multiple EPs in the Lindbladian eigenvalues considered as functions of a counting field.
We identify dynamical observables affected by these transitions and demonstrate how the underlying topology can be recovered from experimentally measured quantum jump distributions.
arXiv Detail & Related papers (2024-08-09T18:00:02Z) - Exceptional point and hysteresis trajectories in cold Rydberg atomic gases [33.90303571473806]
Long-range interactions induce an additional dissipation channel, resulting in non-Hermitian many-body dynamics.
Here, we report experimental observation of interaction-induced exceptional points in cold Rydberg atomic gases.
arXiv Detail & Related papers (2024-08-06T11:35:06Z) - Crossing exceptional points in non-Hermitian quantum systems [41.94295877935867]
We reveal the behavior of two-photon quantum states in non-Hermitian systems across the exceptional point.
We demonstrate a switching in the quantum interference of photons directly at the exceptional point.
arXiv Detail & Related papers (2024-07-17T14:04:00Z) - Measuring topological invariants for higher-order exceptional points in quantum three-mode systems [1.9334835720031431]
Experimental characterizations of exceptional topological invariants have been restricted to second-order EPs in classical or semiclassical systems.<n>We here propose an NH multi-mode system with higher-order EPs, each of which is underlain by a multifold-degenerate multipartite entangled eigenstate.<n>Our results extend research of exceptional topology to fully quantum-mechanical models with multipartite entangled eigenstates.
arXiv Detail & Related papers (2024-02-05T09:51:01Z) - Exceptional nexus in Bose-Einstein condensates with collective dissipation [12.204098125435074]
In multistate non-Hermitian systems, higher-order exceptional points and exotic phenomena with no analogues arise.
A paradigm is the exceptional nexus (EX), a third-order EP as the cusp of exceptional arcs (EAs)
Our work paves the way for exploring higher-order exceptional physics in the many-body setting of ultracold atoms.
arXiv Detail & Related papers (2023-09-18T09:55:37Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Experimental Simulation of Symmetry-Protected Higher-Order Exceptional
Points with Single Photons [8.82526178604718]
We experimentally simulate two-dimensional topological NH band structures using single-photon interferometry.
We observe topologically stable third-order EPs obtained by tuning only two real parameters in the presence of symmetry.
Our work reveals the abundant and conceptually richer higher-order EPs protected by symmetries.
arXiv Detail & Related papers (2023-03-21T13:22:43Z) - Higher-order exceptional point in a blue-detuned non-Hermitian cavity
optomechanical system [5.001077638364239]
We propose a non-Hermitian three-mode optomechanical system in the blue-sideband regime for predicting the third-order EP (EP3)
For the gain (loss) MR, we find only two degenerate EP3s or EP2s can be predicted by tuning enhanced coupling strength.
Our proposal provides a potential way to predict higher-order EPs or multiple EP2s and study multimode quantum squeezing around EPs.
arXiv Detail & Related papers (2022-05-15T05:20:59Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Exponentially-enhanced quantum sensing with non-Hermitian lattice
dynamics [77.34726150561087]
We show that certain asymmetric non-Hermitian tight-binding models with a $mathbbZ$ symmetry yield a pronounced sensing advantage.
Our setup is directly compatible with a variety of quantum optical and superconducting circuit platforms.
arXiv Detail & Related papers (2020-04-01T17:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.