論文の概要: Deliberation in Latent Space via Differentiable Cache Augmentation
- arxiv url: http://arxiv.org/abs/2412.17747v1
- Date: Mon, 23 Dec 2024 18:02:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:41.918830
- Title: Deliberation in Latent Space via Differentiable Cache Augmentation
- Title(参考訳): 差分キャッシュ拡張による潜時空間における検討
- Authors: Luyang Liu, Jonas Pfeiffer, Jiaxing Wu, Jun Xie, Arthur Szlam,
- Abstract要約: 凍結した大規模言語モデルをオフラインコプロセッサで拡張し,キー値(kv)キャッシュで動作することを示す。
このコプロセッサは、後続の復号化の忠実性を改善するために設計された遅延埋め込みのセットでキャッシュを増強する。
キャッシュが拡張されると、デコーダは多数のトークンに対して低いパープレキシティを達成できることを示す。
- 参考スコア(独自算出の注目度): 48.228222586655484
- License:
- Abstract: Techniques enabling large language models (LLMs) to "think more" by generating and attending to intermediate reasoning steps have shown promise in solving complex problems. However, the standard approaches generate sequences of discrete tokens immediately before responding, and so they can incur significant latency costs and be challenging to optimize. In this work, we demonstrate that a frozen LLM can be augmented with an offline coprocessor that operates on the model's key-value (kv) cache. This coprocessor augments the cache with a set of latent embeddings designed to improve the fidelity of subsequent decoding. We train this coprocessor using the language modeling loss from the decoder on standard pretraining data, while keeping the decoder itself frozen. This approach enables the model to learn, in an end-to-end differentiable fashion, how to distill additional computation into its kv-cache. Because the decoder remains unchanged, the coprocessor can operate offline and asynchronously, and the language model can function normally if the coprocessor is unavailable or if a given cache is deemed not to require extra computation. We show experimentally that when a cache is augmented, the decoder achieves lower perplexity on numerous subsequent tokens. Furthermore, even without any task-specific training, our experiments demonstrate that cache augmentation consistently reduces perplexity and improves performance across a range of reasoning-intensive tasks.
- Abstract(参考訳): 大きな言語モデル(LLM)を中間的推論ステップの生成と参加によって"もっと考える"ことを可能にする技術は、複雑な問題を解決する上で有望であることを示している。
しかし、標準のアプローチは応答直前に離散トークンのシーケンスを生成するため、大きなレイテンシコストを発生させることができ、最適化が難しい。
本研究は, 凍結LDMを, モデルキー値(kv)キャッシュで動作するオフラインコプロセッサで拡張できることを実証する。
このコプロセッサは、後続の復号化の忠実性を改善するために設計された遅延埋め込みのセットでキャッシュを増強する。
我々は、このコプロセッサを、デコーダ自体を凍結させながら、標準的な事前学習データに基づいて、デコーダから失った言語モデリングを用いて訓練する。
このアプローチにより、モデルはエンドツーエンドの微分可能な方法で、kv-cacheにさらなる計算を蒸留する方法を学ぶことができる。
デコーダは変更されていないため、コプロセッサはオフラインで非同期に動作でき、コプロセッサが利用できない場合や、余分な計算を必要としないと判断された場合、言語モデルは正常に機能する。
キャッシュが拡張されると、デコーダは多数のトークンに対して低いパープレキシティを達成できることを示す。
さらに,タスク固有のトレーニングがなくても,キャッシュ拡張が相変わらず複雑度を低減し,多岐にわたる推論集約タスクのパフォーマンスを向上させることを示す実験を行った。
関連論文リスト
- SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity [15.872209884833977]
本稿では,メモリオーバーヘッドを削減するためのメモリ効率スケジューリング手法と,精度の劣化を最小限に抑えるためのオンライン調整機構を提案する。
SparseTemは効率の良いDetでは1.79x、CRNNでは4.72xの高速化を実現している。
論文 参考訳(メタデータ) (2024-10-28T07:13:25Z) - EPIC: Efficient Position-Independent Context Caching for Serving Large Language Models [19.510078997414606]
EPICは、大きな言語モデルのための位置非依存のコンテキストキャッシュを導入している。
EPICはTTFTの最大8倍のスループットと既存のシステムに対する7倍のスループットを提供する。
論文 参考訳(メタデータ) (2024-10-20T08:42:29Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
我々は,命令追従型大規模視覚言語モデルの効率的なデプロイのための新しい戦略であるElastic Cacheを紹介する。
本稿では,冗長キャッシュを具現化する重要なキャッシュマージ戦略を提案する。
命令符号化では,キャッシュの重要性を評価するために周波数を利用する。
様々なLVLMの結果は、Elastic Cacheが効率を向上するだけでなく、言語生成における既存のプルーニングメソッドよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-25T15:29:05Z) - CItruS: Chunked Instruction-aware State Eviction for Long Sequence Modeling [52.404072802235234]
本稿では,下流タスクに有用な注目度を隠蔽状態の消去プロセスに統合する新しいモデリング手法であるChunked Instruction-Aware State Eviction(CItruS)を紹介する。
トレーニング不要な手法は,メモリ予算が同じ条件下で,複数の強いベースライン上での長いシーケンス理解および検索タスクにおいて,優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-17T18:34:58Z) - Learning-to-Cache: Accelerating Diffusion Transformer via Layer Caching [56.286064975443026]
拡散変圧器内の多数の層をキャッシュ機構で計算することで、モデルパラメータを更新しなくても容易に除去できる。
本稿では,拡散変圧器の動的手法でキャッシングを学習するL2C(Learningto-Cache)を提案する。
実験の結果,L2C は DDIM や DPM-r など,キャッシュベースの従来の手法と同等の推論速度で性能を向上することがわかった。
論文 参考訳(メタデータ) (2024-06-03T18:49:57Z) - XC-Cache: Cross-Attending to Cached Context for Efficient LLM Inference [20.249206904309816]
インコンテキスト学習(ICL)アプローチは典型的には、参照情報に基づいて条件デコーダのみの言語モデルを生成するプロンプトを活用する。
この研究は、エンコーダ・デコーダアーキテクチャにインスパイアされたモデルを導入し、プロンプトなしで参照テキストの条件生成にクロスアテンションを使用することにより、これらの制限に対処する。
質問応答(QA)をテストベッドとして使用し、条件生成能力を評価し、ICLより優れており、微調整された誘導LDMと同等であり、標準KVキャッシュと比較して空間フットプリントを2桁の精度で大幅に削減する。
論文 参考訳(メタデータ) (2024-04-23T18:10:42Z) - Smuche: Scalar-Multiplicative Caching in Homomorphic Encryption [1.3824176915623292]
ホモモルフィック暗号化(HE)は、信頼できない環境での機械学習システムで使用される。
本稿では,任意のパラメータに依存しない新しいテキストコンスタント時間キャッシング手法を提案する。
SmucheはScalar-multiplicative Caching of Homomorphic Encryptionの略である。
論文 参考訳(メタデータ) (2023-12-26T23:11:25Z) - Faster Diffusion: Rethinking the Role of the Encoder for Diffusion Model Inference [95.42299246592756]
本稿では,UNetエンコーダについて検討し,エンコーダの特徴を実証的に分析する。
エンコーダの特徴は最小限に変化するが,デコーダの特徴は時間段階によって大きく異なる。
我々は、テキスト・ツー・ビデオ、パーソナライズド・ジェネレーション、参照誘導ジェネレーションといった他のタスクに対するアプローチを検証する。
論文 参考訳(メタデータ) (2023-12-15T08:46:43Z) - You Need Multiple Exiting: Dynamic Early Exiting for Accelerating
Unified Vision Language Model [37.24203191658052]
大規模なTransformerモデルは、統一アーキテクチャで様々な下流視覚言語タスクに大幅な改善をもたらす。
性能改善は、モデルサイズが増大し、推論速度が遅くなり、厳格化のコストが増大する。
本稿では,エンコーダとデコーダのレイヤを動的にスキップできる統一視覚言語モデルのための新しい早期終了戦略を提案する。
論文 参考訳(メタデータ) (2022-11-21T02:32:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。