論文の概要: Survey of Large Multimodal Model Datasets, Application Categories and Taxonomy
- arxiv url: http://arxiv.org/abs/2412.17759v1
- Date: Mon, 23 Dec 2024 18:15:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-24 16:01:30.769680
- Title: Survey of Large Multimodal Model Datasets, Application Categories and Taxonomy
- Title(参考訳): 大規模マルチモーダルモデルデータセット, 応用カテゴリ, 分類学に関する調査
- Authors: Priyaranjan Pattnayak, Hitesh Laxmichand Patel, Bhargava Kumar, Amit Agarwal, Ishan Banerjee, Srikant Panda, Tejaswini Kumar,
- Abstract要約: 人工知能の急速に発展する分野であるマルチモーダル学習は、より汎用的で堅牢なシステムの構築を目指している。
多くの感覚を通じて情報を同化する人間の能力に触発され、テキストからビデオへの変換、視覚的質問応答、画像キャプションなどの応用が可能となる。
マルチモーダル言語モデル(MLLM)をサポートするデータセットの最近の発展について概説する。
- 参考スコア(独自算出の注目度): 2.294223504228228
- License:
- Abstract: Multimodal learning, a rapidly evolving field in artificial intelligence, seeks to construct more versatile and robust systems by integrating and analyzing diverse types of data, including text, images, audio, and video. Inspired by the human ability to assimilate information through many senses, this method enables applications such as text-to-video conversion, visual question answering, and image captioning. Recent developments in datasets that support multimodal language models (MLLMs) are highlighted in this overview. Large-scale multimodal datasets are essential because they allow for thorough testing and training of these models. With an emphasis on their contributions to the discipline, the study examines a variety of datasets, including those for training, domain-specific tasks, and real-world applications. It also emphasizes how crucial benchmark datasets are for assessing models' performance in a range of scenarios, scalability, and applicability. Since multimodal learning is always changing, overcoming these obstacles will help AI research and applications reach new heights.
- Abstract(参考訳): 人工知能の急速に発展する分野であるマルチモーダル学習は、テキスト、画像、オーディオ、ビデオを含む多様な種類のデータの統合と分析によって、より汎用的で堅牢なシステムの構築を目指している。
多くの感覚を通じて情報を同化する人間の能力に触発され、テキストからビデオへの変換、視覚的質問応答、画像キャプションなどの応用が可能となる。
マルチモーダル言語モデル(MLLM)をサポートするデータセットの最近の発展について概説する。
大規模なマルチモーダルデータセットは、これらのモデルの徹底的なテストとトレーニングを可能にするため、不可欠である。
この研究は、規律への貢献に重点を置いて、トレーニングやドメイン固有のタスク、現実世界のアプリケーションなど、さまざまなデータセットを調査している。
さらに氏は、さまざまなシナリオやスケーラビリティ、適用可能性において、モデルのパフォーマンスを評価する上で、ベンチマークデータセットがいかに重要かを強調している。
マルチモーダル学習は常に変化しているので、これらの障害を克服することで、AIの研究やアプリケーションが新たな高度に達するのに役立ちます。
関連論文リスト
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
近年,MLLM (Multimodal Large Language Models) が注目されている。
検索拡張技術はLLMとMLLMの両方に有効なプラグインであることが証明されている。
本研究では,MLLMの新しい検索支援フレームワークであるRA-BLIP(Retrieval-Augmented Bootstrapping Language-Image Pre-training)を提案する。
論文 参考訳(メタデータ) (2024-10-18T03:45:19Z) - MMSci: A Dataset for Graduate-Level Multi-Discipline Multimodal Scientific Understanding [59.41495657570397]
このデータセットには、スキーマ図、シミュレーション画像、マクロ/顕微鏡写真、実験的可視化などの図が含まれている。
我々は,6つのプロプライエタリモデルと10以上のオープンソースモデルを評価し,科学的フィギュアキャプションと複数選択質問のベンチマークを開発した。
データセットとベンチマークは、さらなる研究をサポートするためにリリースされる予定だ。
論文 参考訳(メタデータ) (2024-07-06T00:40:53Z) - HEMM: Holistic Evaluation of Multimodal Foundation Models [91.60364024897653]
マルチモーダル・ファンデーション・モデルは、画像、ビデオ、オーディオ、その他の知覚モダリティと共にテキストをホリスティックに処理することができる。
モデリング決定、タスク、ドメインの範囲を考えると、マルチモーダル基盤モデルの進歩を特徴づけ、研究することは困難である。
論文 参考訳(メタデータ) (2024-07-03T18:00:48Z) - Language and Multimodal Models in Sports: A Survey of Datasets and Applications [20.99857526324661]
自然言語処理(NLP)とマルチモーダルモデルの最近の統合は、スポーツ分析の分野を進歩させてきた。
この調査は、2020年以降のこれらのイノベーションを駆動するデータセットとアプリケーションの包括的なレビューを示す。
論文 参考訳(メタデータ) (2024-06-18T03:59:26Z) - The Revolution of Multimodal Large Language Models: A Survey [46.84953515670248]
MLLM(Multimodal Large Language Models)は、視覚とテキストのモダリティをシームレスに統合することができる。
本稿では,近年の視覚的MLLMのレビュー,アーキテクチャ選択,マルチモーダルアライメント戦略,トレーニング手法について述べる。
論文 参考訳(メタデータ) (2024-02-19T19:01:01Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
本稿では,視覚的インストラクションチューニングのための画像と対話を同期的に合成する新しいデータ収集手法を提案する。
このアプローチは生成モデルのパワーを活用し、ChatGPTとテキスト・ツー・イメージ生成モデルの能力とを結合する。
本研究は,各種データセットを対象とした総合的な実験を含む。
論文 参考訳(メタデータ) (2023-08-20T12:43:52Z) - Multimodality Representation Learning: A Survey on Evolution,
Pretraining and Its Applications [47.501121601856795]
マルチモダリティ表現学習は、異なるモダリティとそれらの相関から情報を埋め込む学習手法である。
異なるモダリティからのクロスモーダル相互作用と補完情報は、高度なモデルが任意のマルチモーダルタスクを実行するために不可欠である。
本調査では,深層学習型マルチモーダルアーキテクチャの進化と拡張に関する文献を報告する。
論文 参考訳(メタデータ) (2023-02-01T11:48:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。