EEG-Based Mental Imagery Task Adaptation via Ensemble of Weight-Decomposed Low-Rank Adapters
- URL: http://arxiv.org/abs/2412.17818v1
- Date: Sun, 08 Dec 2024 14:57:00 GMT
- Title: EEG-Based Mental Imagery Task Adaptation via Ensemble of Weight-Decomposed Low-Rank Adapters
- Authors: Taveena Lotey, Aman Verma, Partha Pratim Roy,
- Abstract summary: We propose a novel ensemble of weight-decomposed low-rank adaptation methods, EDoRA, for parameter-efficient mental imagery task adaptation.
The proposed method has performed better than full fine-tune and state-of-the-art PEFT methods for mental imagery classification.
- Score: 8.238310169506944
- License:
- Abstract: Electroencephalography (EEG) is widely researched for neural decoding in Brain Computer Interfaces (BCIs) as it is non-invasive, portable, and economical. However, EEG signals suffer from inter- and intra-subject variability, leading to poor performance. Recent technological advancements have led to deep learning (DL) models that have achieved high performance in various fields. However, such large models are compute- and resource-intensive and are a bottleneck for real-time neural decoding. Data distribution shift can be handled with the help of domain adaptation techniques of transfer learning (fine-tuning) and adversarial training that requires model parameter updates according to the target domain. One such recent technique is Parameter-efficient fine-tuning (PEFT), which requires only a small fraction of the total trainable parameters compared to fine-tuning the whole model. Therefore, we explored PEFT methods for adapting EEG-based mental imagery tasks. We considered two mental imagery tasks: speech imagery and motor imagery, as both of these tasks are instrumental in post-stroke neuro-rehabilitation. We proposed a novel ensemble of weight-decomposed low-rank adaptation methods, EDoRA, for parameter-efficient mental imagery task adaptation through EEG signal classification. The performance of the proposed PEFT method is validated on two publicly available datasets, one speech imagery, and the other motor imagery dataset. In extensive experiments and analysis, the proposed method has performed better than full fine-tune and state-of-the-art PEFT methods for mental imagery EEG classification.
Related papers
- Toward Relative Positional Encoding in Spiking Transformers [52.62008099390541]
Spiking neural networks (SNNs) are bio-inspired networks that model how neurons in the brain communicate through discrete spikes.
In this paper, we introduce an approximate method for relative positional encoding (RPE) in Spiking Transformers.
arXiv Detail & Related papers (2025-01-28T06:42:37Z) - FoME: A Foundation Model for EEG using Adaptive Temporal-Lateral Attention Scaling [19.85701025524892]
FoME (Foundation Model for EEG) is a novel approach using adaptive temporal-lateral attention scaling.
FoME is pre-trained on a diverse 1.7TB dataset of scalp and intracranial EEG recordings, comprising 745M parameters trained for 1,096k steps.
arXiv Detail & Related papers (2024-09-19T04:22:40Z) - Guess What I Think: Streamlined EEG-to-Image Generation with Latent Diffusion Models [4.933734706786783]
EEG is a low-cost, non-invasive, and portable neuroimaging technique.
EEG presents inherent challenges due to its low spatial resolution and susceptibility to noise and artifacts.
We propose a framework based on the ControlNet adapter for conditioning a latent diffusion model through EEG signals.
arXiv Detail & Related papers (2024-09-17T19:07:13Z) - Probing the Efficacy of Federated Parameter-Efficient Fine-Tuning of Vision Transformers for Medical Image Classification [16.070261684997362]
Fine-tuning pre-trained models for various downstream tasks is a critical problem in the medical imaging domain.
Large size of these models necessitates the use of parameter-efficient fine-tuning (PEFT) to reduce the communication burden in federated learning.
In this work, we investigate various federated PEFT strategies for adapting a Vision Transformer (ViT) model for medical image classification.
arXiv Detail & Related papers (2024-07-16T10:28:50Z) - Communication-Efficient Hybrid Federated Learning for E-health with Horizontal and Vertical Data Partitioning [67.49221252724229]
E-health allows smart devices and medical institutions to collaboratively collect patients' data, which is trained by Artificial Intelligence (AI) technologies to help doctors make diagnosis.
Applying federated learning in e-health faces many challenges.
Medical data is both horizontally and vertically partitioned.
A naive combination of HFL and VFL has limitations including low training efficiency, unsound convergence analysis, and lack of parameter tuning strategies.
arXiv Detail & Related papers (2024-04-15T19:45:07Z) - Parameter Efficient Finetuning for Speech Emotion Recognition and Domain
Adaptation [13.774287532165019]
This paper investigates parameter-efficient finetuning (PEFT) for speech emotion recognition (SER)
Various PEFT adaptors are systematically studied for both classification of discrete emotion categories and prediction of dimensional emotional attributes.
A two-stage adaptation strategy is proposed to adapt models trained on acted emotion data, which is more readily available, to make the model more adept at capturing natural emotional expressions.
arXiv Detail & Related papers (2024-02-19T00:21:07Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Parameter-Efficient Fine-Tuning for Medical Image Analysis: The Missed Opportunity [15.404013190033242]
The application of.
Efficient Fine-Tuning (PEFT) in medical image analysis is relatively unexplored.
This study fills this gap by evaluating 17 distinct PEFT algorithms on image classification and text-to-image generation tasks.
Our findings demonstrate PEFT's effectiveness, particularly in low data regimes common in medical imaging.
arXiv Detail & Related papers (2023-05-14T21:18:18Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.