Decoding individual words from non-invasive brain recordings across 723 participants
- URL: http://arxiv.org/abs/2412.17829v1
- Date: Wed, 11 Dec 2024 15:53:49 GMT
- Title: Decoding individual words from non-invasive brain recordings across 723 participants
- Authors: Stéphane d'Ascoli, Corentin Bel, Jérémy Rapin, Hubert Banville, Yohann Benchetrit, Christophe Pallier, Jean-Rémi King,
- Abstract summary: We introduce a novel deep learning pipeline to decode individual words from non-invasive electro- (EEG) and magneto-encephalography (MEG) signals.
We train and evaluate our approach on an unprecedentedly large number of participants exposed to five million words either written or spoken in English, French or Dutch.
- Score: 9.9068852821927
- License:
- Abstract: Deep learning has recently enabled the decoding of language from the neural activity of a few participants with electrodes implanted inside their brain. However, reliably decoding words from non-invasive recordings remains an open challenge. To tackle this issue, we introduce a novel deep learning pipeline to decode individual words from non-invasive electro- (EEG) and magneto-encephalography (MEG) signals. We train and evaluate our approach on an unprecedentedly large number of participants (723) exposed to five million words either written or spoken in English, French or Dutch. Our model outperforms existing methods consistently across participants, devices, languages, and tasks, and can decode words absent from the training set. Our analyses highlight the importance of the recording device and experimental protocol: MEG and reading are easier to decode than EEG and listening, respectively, and it is preferable to collect a large amount of data per participant than to repeat stimuli across a large number of participants. Furthermore, decoding performance consistently increases with the amount of (i) data used for training and (ii) data used for averaging during testing. Finally, single-word predictions show that our model effectively relies on word semantics but also captures syntactic and surface properties such as part-of-speech, word length and even individual letters, especially in the reading condition. Overall, our findings delineate the path and remaining challenges towards building non-invasive brain decoders for natural language.
Related papers
- On Creating A Brain-To-Text Decoder [6.084958172018792]
This paper centers on the application of raw electroencephalogram (EEG) signals for decoding human brain activity.
The investigation specifically scrutinizes the efficacy of brain-computer interfaces (BCI) in deciphering neural signals associated with speech production.
arXiv Detail & Related papers (2025-01-10T20:04:54Z) - Language Generation from Brain Recordings [68.97414452707103]
We propose a generative language BCI that utilizes the capacity of a large language model and a semantic brain decoder.
The proposed model can generate coherent language sequences aligned with the semantic content of visual or auditory language stimuli.
Our findings demonstrate the potential and feasibility of employing BCIs in direct language generation.
arXiv Detail & Related papers (2023-11-16T13:37:21Z) - Decoding speech perception from non-invasive brain recordings [48.46819575538446]
We introduce a model trained with contrastive-learning to decode self-supervised representations of perceived speech from non-invasive recordings.
Our model can identify, from 3 seconds of MEG signals, the corresponding speech segment with up to 41% accuracy out of more than 1,000 distinct possibilities.
arXiv Detail & Related papers (2022-08-25T10:01:43Z) - Wav2Seq: Pre-training Speech-to-Text Encoder-Decoder Models Using Pseudo
Languages [58.43299730989809]
We introduce Wav2Seq, the first self-supervised approach to pre-train both parts of encoder-decoder models for speech data.
We induce a pseudo language as a compact discrete representation, and formulate a self-supervised pseudo speech recognition task.
This process stands on its own, or can be applied as low-cost second-stage pre-training.
arXiv Detail & Related papers (2022-05-02T17:59:02Z) - Open Vocabulary Electroencephalography-To-Text Decoding and Zero-shot
Sentiment Classification [78.120927891455]
State-of-the-art brain-to-text systems have achieved great success in decoding language directly from brain signals using neural networks.
In this paper, we extend the problem to open vocabulary Electroencephalography(EEG)-To-Text Sequence-To-Sequence decoding and zero-shot sentence sentiment classification on natural reading tasks.
Our model achieves a 40.1% BLEU-1 score on EEG-To-Text decoding and a 55.6% F1 score on zero-shot EEG-based ternary sentiment classification, which significantly outperforms supervised baselines.
arXiv Detail & Related papers (2021-12-05T21:57:22Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z) - Deep Recurrent Encoder: A scalable end-to-end network to model brain
signals [122.1055193683784]
We propose an end-to-end deep learning architecture trained to predict the brain responses of multiple subjects at once.
We successfully test this approach on a large cohort of magnetoencephalography (MEG) recordings acquired during a one-hour reading task.
arXiv Detail & Related papers (2021-03-03T11:39:17Z) - Decoding EEG Brain Activity for Multi-Modal Natural Language Processing [9.35961671939495]
We present the first large-scale study of systematically analyzing the potential of EEG brain activity data for improving natural language processing tasks.
We find that filtering the EEG signals into frequency bands is more beneficial than using the broadband signal.
For a range of word embedding types, EEG data improves binary and ternary sentiment classification and outperforms multiple baselines.
arXiv Detail & Related papers (2021-02-17T09:44:21Z) - Measuring Memorization Effect in Word-Level Neural Networks Probing [0.9156064716689833]
We propose a simple general method for measuring the memorization effect, based on a symmetric selection of test words seen versus unseen in training.
Our method can be used to explicitly quantify the amount of memorization happening in a probing setup, so that an adequate setup can be chosen and the results of the probing can be interpreted with a reliability estimate.
arXiv Detail & Related papers (2020-06-29T14:35:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.