Correlated Noise Estimation with Quantum Sensor Networks
- URL: http://arxiv.org/abs/2412.17903v1
- Date: Mon, 23 Dec 2024 19:00:06 GMT
- Title: Correlated Noise Estimation with Quantum Sensor Networks
- Authors: Anthony J. Brady, Yu-Xin Wang, Victor V. Albert, Alexey Gorshkov, Quntao Zhuang,
- Abstract summary: We develop a theoretical framework to determine the limits of correlated (weak) noise estimation with quantum sensor networks.
We identify a sensing protocol, reminiscent of a many-body echo sequence, that achieves the fundamental limits of measurement sensitivity for a broad class of problems.
- Score: 18.51122677780099
- License:
- Abstract: In this article, we address the metrological problem of estimating collective stochastic properties of a many-body quantum system. Canonical examples include center-of-mass quadrature fluctuations in a system of bosonic modes and correlated dephasing in an ensemble of qubits (e.g., spins) or fermions. We develop a theoretical framework to determine the limits of correlated (weak) noise estimation with quantum sensor networks and unveil the requirements for entanglement advantage. Notably, an advantage emerges from the synergistic interplay between quantum correlations of the sensors and classical (spatial) correlations of the noises. We determine optimal entangled probe states and identify a sensing protocol, reminiscent of a many-body echo sequence, that achieves the fundamental limits of measurement sensitivity for a broad class of problems.
Related papers
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.
We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Exponential entanglement advantage in sensing correlated noise [16.70008024600165]
We propose a new form of exponential quantum advantage in the context of sensing correlated noise.
We show that entanglement can lead to an exponential enhancement in the sensitivity for estimating a small parameter.
Our work thus opens a novel pathway towards achieving entanglement-based sensing advantage.
arXiv Detail & Related papers (2024-10-08T10:15:21Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Robust Quantum Sensing with Multiparameter Decorrelation [0.15705429611931054]
We develop a new approach, adaptable to any quantum platform, for designing robust sensing protocols.
We identify information-theoretic goals that guide a machine learning agent through an otherwise intractably large space of potential sensing protocols.
We demonstrate the effect of decorrelation on outcomes and Bayesian inferencing through statistical analysis in parameter space.
arXiv Detail & Related papers (2024-05-13T16:41:32Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - Spatially correlated classical and quantum noise in driven qubits: The
good, the bad, and the ugly [0.0]
Correlated noise across multiple qubits poses a significant challenge for achieving scalable quantum processors.
We study the dynamics of driven qubits under spatially correlated noise, including both Markovian and non-Markovian noise.
In particular, we reveal that, in the quantum limit, pure dephasing noise induces a coherent long-range two-qubit Ising interaction that correlates distant qubits.
arXiv Detail & Related papers (2023-08-06T08:34:49Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Optimizing one-axis twists for variational Bayesian quantum metrology [0.0]
In particular, qubit phase estimation, or rotation sensing, appears as a ubiquitous problem with applications to electric field sensing, magnetometry, atomic clocks, and gyroscopes.
We propose a new family of parametrized encoding and decoding protocols called arbitrary-axis twist ansatzes.
We show that it can lead to a substantial reduction in the number of one-axis twists needed to achieve a target estimation error.
arXiv Detail & Related papers (2022-12-23T16:45:15Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - From Non-Hermitian Linear Response to Dynamical Correlations and
Fluctuation-Dissipation Relations in Quantum Many-Body Systems [0.0]
We propose a technique for measuring unequal-time anti-commutators using the linear response of a system to a non-Hermitian perturbation.
We relate the scheme to the quantum Zeno effect and weak measurements, and illustrate possible implementations.
arXiv Detail & Related papers (2021-04-08T18:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.