A Case for Quantum Circuit Cutting for NISQ Applications: Impact of topology, determinism, and sparsity
- URL: http://arxiv.org/abs/2412.17929v1
- Date: Mon, 23 Dec 2024 19:39:48 GMT
- Title: A Case for Quantum Circuit Cutting for NISQ Applications: Impact of topology, determinism, and sparsity
- Authors: Zirui Li, Minghao Guo, Mayank Barad, Wei Tang, Eddy Z. Zhang, Yipeng Huang,
- Abstract summary: We show that variational algorithm ansatzes for near-term quantum computing are well-suited for the quantum circuit cutting strategy.<n>Previous demonstrations of circuit cutting focused on the exponential execution and postprocessing costs.<n>We scale the feasible ansatzes to over 200 qubits with six ansatz layers, beyond the capability of prior work.
- Score: 15.339699314849
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We make the case that variational algorithm ansatzes for near-term quantum computing are well-suited for the quantum circuit cutting strategy. Previous demonstrations of circuit cutting focused on the exponential execution and postprocessing costs due to the cuts needed to partition a circuit topology, leading to overly pessimistic evaluations of the approach. This work observes that the ansatz Clifford structure and variational parameter pruning significantly reduce these costs. By keeping track of the limited set of correct subcircuit initializations and measurements, we reduce the number of experiments needed by up to 16x, matching and beating the error mitigation offered by classical shadows tomography. By performing reconstruction as a sparse tensor contraction, we scale the feasible ansatzes to over 200 qubits with six ansatz layers, beyond the capability of prior work.
Related papers
- Pushing the Limits of Low-Bit Optimizers: A Focus on EMA Dynamics [65.37942405146232]
We present a novel type of overload that carries with extremely lightweight state elements, achieved through ultra-low-precision quantization.
The proposed SOLO achieves substantial memory savings (approximately 45 GB when training a 7B model) with minimal accuracy loss.
arXiv Detail & Related papers (2025-05-01T06:47:45Z) - Clifford and Non-Clifford Splitting in Quantum Circuits: Applications and ZX-Calculus Detection Procedure [49.1574468325115]
We propose and analyze use cases that come from quantum circuits that can be written as product between a Clifford and a Non-Clifford unitary.
We make use of ZX-Calculus and its assets to detect a limiting border of these circuits that would allow for a separation between a Clifford section and a Non-Clifford section.
arXiv Detail & Related papers (2025-04-22T16:10:34Z) - Spatial and temporal circuit cutting with hypergraphic partitioning [0.0]
This paper presents a hypergraph-based circuit cutting methodology suitable for both spatial and temporal scenarios.
By modeling quantum circuits as high-level hypergraphs, we apply partitionings such as Stoer-Wagner, Fiduccia-Mattheyses, and Kernighan-Lin.
arXiv Detail & Related papers (2025-04-12T20:31:07Z) - QuCLEAR: Clifford Extraction and Absorption for Significant Reduction in Quantum Circuit Size [8.043057448895343]
Currently available quantum devices suffer from noisy quantum gates, which degrade the fidelity of executed quantum circuits.
We present QuCLEAR, a compilation framework designed to optimize quantum circuits.
arXiv Detail & Related papers (2024-08-23T18:03:57Z) - FragQC: An Efficient Quantum Error Reduction Technique using Quantum
Circuit Fragmentation [4.2754140179767415]
We present it FragQC, a software tool that cuts a quantum circuit into sub-circuits when its error probability exceeds a certain threshold.
We achieve an increase of fidelity by 14.83% compared to direct execution without cutting the circuit, and 8.45% over the state-of-the-art ILP-based method.
arXiv Detail & Related papers (2023-09-30T17:38:31Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Circuit Cutting with Non-Maximally Entangled States [59.11160990637615]
Distributed quantum computing combines the computational power of multiple devices to overcome the limitations of individual devices.
circuit cutting techniques enable the distribution of quantum computations through classical communication.
Quantum teleportation allows the distribution of quantum computations without an exponential increase in shots.
We propose a novel circuit cutting technique that leverages non-maximally entangled qubit pairs.
arXiv Detail & Related papers (2023-06-21T08:03:34Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Investigating the effect of circuit cutting in QAOA for the MaxCut
problem on NISQ devices [36.32934805738396]
Noisy Intermediate-Scale Quantum (NISQ) devices are restricted by their limited number of qubits and their short decoherence times.
quantum circuit cutting decomposes the execution of a large quantum circuit into the execution of multiple smaller quantum circuits.
arXiv Detail & Related papers (2023-02-03T15:02:28Z) - Approximate Quantum Circuit Cutting [4.3186101474291325]
Current and imminent quantum hardware lacks reliability and applicability due to noise and limited qubit counts.
Quantum circuit cutting -- a technique dividing large quantum circuits into smaller subcircuits with sizes appropriate for the limited quantum resource at hand -- is used to mitigate these problems.
This article introduces the notion of approximate circuit reconstruction.
arXiv Detail & Related papers (2022-12-02T16:04:52Z) - Bayesian Learning of Parameterised Quantum Circuits [0.0]
We take a probabilistic point of view and reformulate the classical optimisation as an approximation of a Bayesian posterior.
We describe a dimension reduction strategy based on a maximum a posteriori point estimate with a Laplace prior.
Experiments on the Quantinuum H1-2 computer show that the resulting circuits are faster to execute and less noisy than circuits trained without a gradient.
arXiv Detail & Related papers (2022-06-15T14:20:14Z) - Scalable error mitigation for noisy quantum circuits produces
competitive expectation values [1.51714450051254]
We show the utility of zero-noise extrapolation for relevant quantum circuits using up to 26 qubits, circuit depths of 60, and 1080 CNOT gates.
We show that the efficacy of the error mitigation is greatly enhanced by additional error suppression techniques and native gate decomposition.
arXiv Detail & Related papers (2021-08-20T14:32:16Z) - Improving the Performance of Deep Quantum Optimization Algorithms with
Continuous Gate Sets [47.00474212574662]
Variational quantum algorithms are believed to be promising for solving computationally hard problems.
In this paper, we experimentally investigate the circuit-depth-dependent performance of QAOA applied to exact-cover problem instances.
Our results demonstrate that the use of continuous gate sets may be a key component in extending the impact of near-term quantum computers.
arXiv Detail & Related papers (2020-05-11T17:20:51Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.