QuCLEAR: Clifford Extraction and Absorption for Significant Reduction in Quantum Circuit Size
- URL: http://arxiv.org/abs/2408.13316v1
- Date: Fri, 23 Aug 2024 18:03:57 GMT
- Title: QuCLEAR: Clifford Extraction and Absorption for Significant Reduction in Quantum Circuit Size
- Authors: Ji Liu, Alvin Gonzales, Benchen Huang, Zain Hamid Saleem, Paul Hovland,
- Abstract summary: Currently available quantum devices suffer from noisy quantum gates, which degrade the fidelity of executed quantum circuits.
We present QuCLEAR, a compilation framework designed to optimize quantum circuits.
- Score: 8.043057448895343
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing carries significant potential for addressing practical problems. However, currently available quantum devices suffer from noisy quantum gates, which degrade the fidelity of executed quantum circuits. Therefore, quantum circuit optimization is crucial for obtaining useful results. In this paper, we present QuCLEAR, a compilation framework designed to optimize quantum circuits. QuCLEAR significantly reduces both the two-qubit gate count and the circuit depth through two novel optimization steps. First, we introduce the concept of Clifford Extraction, which extracts Clifford subcircuits to the end of the circuit while optimizing the gates. Second, since Clifford circuits are classically simulatable, we propose Clifford Absorption, which efficiently processes the extracted Clifford subcircuits classically. We demonstrate our framework on quantum simulation circuits, which have wide-ranging applications in quantum chemistry simulation, many-body physics, and combinatorial optimization problems. Near-term algorithms such as VQE and QAOA also fall within this category. Experimental results across various benchmarks show that QuCLEAR achieves up to a $77.7\%$ reduction in CNOT gate count and up to an $84.1\%$ reduction in entangling depth compared to state-of-the-art methods.
Related papers
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - FragQC: An Efficient Quantum Error Reduction Technique using Quantum
Circuit Fragmentation [4.2754140179767415]
We present it FragQC, a software tool that cuts a quantum circuit into sub-circuits when its error probability exceeds a certain threshold.
We achieve an increase of fidelity by 14.83% compared to direct execution without cutting the circuit, and 8.45% over the state-of-the-art ILP-based method.
arXiv Detail & Related papers (2023-09-30T17:38:31Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Fast equivalence checking of quantum circuits of Clifford gates [0.0]
checking whether two quantum circuits are equivalent is important for the design and optimization of quantum-computer applications with real-world devices.
We consider quantum circuits consisting of Clifford gates, a practically-relevant subset of all quantum operations which is large enough to exhibit quantum features such as entanglement.
We present a deterministic algorithm that is based on a folklore mathematical result and demonstrate that it is capable of outperforming previously considered state-of-the-art method.
arXiv Detail & Related papers (2023-08-02T15:10:48Z) - Clifford-based Circuit Cutting for Quantum Simulation [2.964626695457492]
We debut Super.tech's SuperSim framework, a new approach for high fidelity and scalable quantum circuit simulation.
SuperSim employs two key techniques for accelerated quantum circuit simulation: Clifford-based simulation and circuit cutting.
Our results show that Clifford-based circuit cutting accelerates the simulation of near-Clifford circuits, allowing 100s of qubits to be evaluated with modest runtimes.
arXiv Detail & Related papers (2023-03-19T22:56:02Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Quadratic Clifford expansion for efficient benchmarking and
initialization of variational quantum algorithms [0.8808007156832224]
Variational quantum algorithms are considered to be appealing applications of near-term quantum computers.
We propose a perturbative approach for efficient benchmarking of variational quantum algorithms.
arXiv Detail & Related papers (2020-11-19T16:09:00Z) - Scalable evaluation of quantum-circuit error loss using Clifford
sampling [8.140947383885262]
We use the quadratic error loss and the final-state fidelity loss to characterize quantum circuits.
It is shown that these loss functions can be efficiently evaluated in a scalable way by sampling from Clifford-dominated circuits.
Our results pave the way towards the optimization-based quantum device and algorithm design in the intermediate-scale quantum regime.
arXiv Detail & Related papers (2020-07-20T11:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.