論文の概要: Trustworthy and Efficient LLMs Meet Databases
- arxiv url: http://arxiv.org/abs/2412.18022v1
- Date: Mon, 23 Dec 2024 22:34:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:26.168433
- Title: Trustworthy and Efficient LLMs Meet Databases
- Title(参考訳): 信頼できる効率的なLLMがデータベースと出会う
- Authors: Kyoungmin Kim, Anastasia Ailamaki,
- Abstract要約: 大規模言語モデル(LLM)をより信頼でき、効率的にすることに大きな注目を集めている。
このチュートリアルでは、このような取り組みを探求し、データベースコミュニティに透明性を持たせる。
- 参考スコア(独自算出の注目度): 9.243304683497904
- License:
- Abstract: In the rapidly evolving AI era with large language models (LLMs) at the core, making LLMs more trustworthy and efficient, especially in output generation (inference), has gained significant attention. This is to reduce plausible but faulty LLM outputs (a.k.a hallucinations) and meet the highly increased inference demands. This tutorial explores such efforts and makes them transparent to the database community. Understanding these efforts is essential in harnessing LLMs in database tasks and adapting database techniques to LLMs. Furthermore, we delve into the synergy between LLMs and databases, highlighting new opportunities and challenges in their intersection. This tutorial aims to share with database researchers and practitioners essential concepts and strategies around LLMs, reduce the unfamiliarity of LLMs, and inspire joining in the intersection between LLMs and databases.
- Abstract(参考訳): 大規模言語モデル(LLM)を中心とする急速に進化したAI時代において、特に出力生成(推論)において、LLMはより信頼性が高く効率的である。
これは可塑性だが欠陥のあるLCM出力(幻覚)を減らし、高い推理要求を満たすためである。
このチュートリアルでは、このような取り組みを探求し、データベースコミュニティに透明性を持たせる。
これらの取り組みを理解することは、データベースタスクにおけるLLMの活用とLLMへのデータベース技術の適用に不可欠である。
さらに、LLMとデータベースのシナジーを掘り下げ、それらの交差点における新たな機会と課題を強調します。
このチュートリアルは、LLMに関する重要な概念と戦略を共有し、LLMの不慣れさを減らし、LLMとデータベースの交差点への参加を促すことを目的としている。
関連論文リスト
- Traditional Methods Outperform Generative LLMs at Forecasting Credit Ratings [17.109522466982476]
大規模言語モデル(LLM)は多くの下流タスクでうまく機能することが示されている。
本稿では,企業信用格付け予測におけるLCMの業績について検討する。
論文 参考訳(メタデータ) (2024-07-24T20:30:55Z) - Relational Database Augmented Large Language Model [59.38841050766026]
大規模言語モデル(LLM)は多くの自然言語処理(NLP)タスクに優れる。
彼らは、トレーニングや教師付き微調整プロセスを通じてのみ、新しい知識を取り入れることができる。
この正確で最新のプライベート情報は、通常リレーショナルデータベースに格納される。
論文 参考訳(メタデータ) (2024-07-21T06:19:10Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
大規模言語モデル(LLM)は、様々なタスクにおいて顕著な能力を示しており、最近、IoT(Internet of Things)アプリケーションにLLMの能力を統合することが研究の注目を集めている。
セキュリティ上の懸念から、多くの機関は最先端の商用LLMサービスへのアクセスを避け、ローカルネットワーク環境でのオープンソースLLMのデプロイと利用を必要としている。
本研究では,LLMを用いた生成IoT(Generative IoT)システムを提案する。
論文 参考訳(メタデータ) (2024-06-14T19:24:00Z) - Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization [12.885866125783618]
大規模言語モデル(LLM)は、特定のクエリに対する不正確な応答を生成する傾向がある。
我々は, LLMのトークン化に挑戦するために, $textbfADT (TokenizerのAdrial dataset)$という逆データセットを構築した。
GPT-4o, Llama-3, Qwen2.5-maxなど, 先進LLMのトークン化に挑戦する上で, 当社のADTは極めて有効であることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-27T11:39:59Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - Knowledge Fusion of Large Language Models [73.28202188100646]
本稿では,大規模言語モデル(LLM)における知識融合の概念を紹介する。
我々は、それらの集合的知識と独特な強みを外部化し、それによってターゲットモデルの能力が、どのソースLLMよりも高められるようにします。
この結果から,LLMの融合により,推論やコモンセンス,コード生成など,対象モデルの性能が向上することが確認された。
論文 参考訳(メタデータ) (2024-01-19T05:02:46Z) - Mutual Enhancement of Large and Small Language Models with Cross-Silo
Knowledge Transfer [27.63746419563747]
大規模言語モデル (LLM) には幅広い知識が与えられているが、そのタスク固有の性能は、しばしば準最適である。
タスク固有のデータで微調整 LLM を必要とするが、プライバシー上の懸念からアクセスできない可能性がある。
本研究では,より小さな言語モデル (SLM) でLLMを強化し,クライアント上でプライベートなタスク固有データを用いて学習する手法を提案する。
論文 参考訳(メタデータ) (2023-12-10T09:52:32Z) - A Survey of Large Language Models for Code: Evolution, Benchmarking, and
Future Trends [30.774685501251817]
一般的な大規模言語モデル(LLM)は、ソフトウェア工学におけるコード生成のようなタスクにおいて大きな可能性を証明している。
コードLLMのかなりの部分は、モデルファインチューニングを通じて一般的なLLMから派生している。
現在、Code LLMとそのパフォーマンスに関する体系的な調査が欠如している。
論文 参考訳(メタデータ) (2023-11-17T07:55:16Z) - Survey on Factuality in Large Language Models: Knowledge, Retrieval and
Domain-Specificity [61.54815512469125]
本調査は,大規模言語モデル(LLM)における事実性の重要課題に対処する。
LLMが様々な領域にまたがる応用を見出すにつれ、その出力の信頼性と正確性は重要となる。
論文 参考訳(メタデータ) (2023-10-11T14:18:03Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。