Explainability in Neural Networks for Natural Language Processing Tasks
- URL: http://arxiv.org/abs/2412.18036v2
- Date: Wed, 08 Jan 2025 19:44:56 GMT
- Title: Explainability in Neural Networks for Natural Language Processing Tasks
- Authors: Melkamu Mersha, Mingiziem Bitewa, Tsion Abay, Jugal Kalita,
- Abstract summary: Local Interpretable Model-Agnostic Explanations (LIME) have emerged as essential tools for providing insights into the behavior of complex systems.
This study leverages LIME to interpret a multi-layer perceptron (MLP) neural network trained on a text classification task.
Despite its effectiveness in offering localized explanations, LIME has limitations in capturing global patterns and feature interactions.
- Score: 5.812284760539713
- License:
- Abstract: Neural networks are widely regarded as black-box models, creating significant challenges in understanding their inner workings, especially in natural language processing (NLP) applications. To address this opacity, model explanation techniques like Local Interpretable Model-Agnostic Explanations (LIME) have emerged as essential tools for providing insights into the behavior of these complex systems. This study leverages LIME to interpret a multi-layer perceptron (MLP) neural network trained on a text classification task. By analyzing the contribution of individual features to model predictions, the LIME approach enhances interpretability and supports informed decision-making. Despite its effectiveness in offering localized explanations, LIME has limitations in capturing global patterns and feature interactions. This research highlights the strengths and shortcomings of LIME and proposes directions for future work to achieve more comprehensive interpretability in neural NLP models.
Related papers
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.
We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.
We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - Neural DNF-MT: A Neuro-symbolic Approach for Learning Interpretable and Editable Policies [51.03989561425833]
We propose a neuro-symbolic approach called neural DNF-MT for end-to-end policy learning.
The differentiable nature of the neural DNF-MT model enables the use of deep actor-critic algorithms for training.
We show how the bivalent representations of deterministic policies can be edited and incorporated back into a neural model.
arXiv Detail & Related papers (2025-01-07T15:51:49Z) - Analysis and Visualization of Linguistic Structures in Large Language Models: Neural Representations of Verb-Particle Constructions in BERT [0.0]
This study investigates the internal representations of verb-particle combinations within large language models (LLMs)
We analyse the representational efficacy of its layers for various verb-particle constructions such as 'agree on', 'come back', and 'give up'
Results show that BERT's middle layers most effectively capture syntactic structures, with significant variability in representational accuracy across different verb categories.
arXiv Detail & Related papers (2024-12-19T09:21:39Z) - Large Language Models are Interpretable Learners [53.56735770834617]
In this paper, we show a combination of Large Language Models (LLMs) and symbolic programs can bridge the gap between expressiveness and interpretability.
The pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts.
As the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable) and other LLMs.
arXiv Detail & Related papers (2024-06-25T02:18:15Z) - Characterizing out-of-distribution generalization of neural networks: application to the disordered Su-Schrieffer-Heeger model [38.79241114146971]
We show how interpretability methods can increase trust in predictions of a neural network trained to classify quantum phases.
In particular, we show that we can ensure better out-of-distribution generalization in the complex classification problem.
This work is an example of how the systematic use of interpretability methods can improve the performance of NNs in scientific problems.
arXiv Detail & Related papers (2024-06-14T13:24:32Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
Large Language Models (LLMs) have achieved unprecedented breakthroughs in various natural language processing domains.
The enigmatic black-box'' nature of LLMs remains a significant challenge for interpretability, hampering transparent and accountable applications.
We propose a novel methodology anchored in sparsity-guided techniques, aiming to provide a holistic interpretation of LLMs.
arXiv Detail & Related papers (2023-12-22T19:55:58Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
Pretrained language models (PLMs) have made significant strides in various natural language processing tasks.
The lack of interpretability due to their black-box'' nature poses challenges for responsible implementation.
We propose a novel approach to interpreting PLMs by employing high-level, meaningful concepts that are easily understandable for humans.
arXiv Detail & Related papers (2023-11-08T20:41:18Z) - Proto-lm: A Prototypical Network-Based Framework for Built-in
Interpretability in Large Language Models [27.841725567976315]
Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing (NLP), but their lack of interpretability has been a major concern.
In this work, we introduce proto-lm, a prototypical network-based white-box framework that allows LLMs to learn immediately interpretable embeddings.
Our method's applicability and interpretability are demonstrated through experiments on a wide range of NLP tasks, and our results indicate a new possibility of creating interpretable models without sacrificing performance.
arXiv Detail & Related papers (2023-11-03T05:55:32Z) - SINC: Self-Supervised In-Context Learning for Vision-Language Tasks [64.44336003123102]
We propose a framework to enable in-context learning in large language models.
A meta-model can learn on self-supervised prompts consisting of tailored demonstrations.
Experiments show that SINC outperforms gradient-based methods in various vision-language tasks.
arXiv Detail & Related papers (2023-07-15T08:33:08Z) - Interpreting Deep Learning Models in Natural Language Processing: A
Review [33.80537635077772]
A long-standing criticism against neural network models is the lack of interpretability.
In this survey, we provide a comprehensive review of various interpretation methods for neural models in NLP.
arXiv Detail & Related papers (2021-10-20T10:17:04Z) - Explaining the Deep Natural Language Processing by Mining Textual
Interpretable Features [3.819533618886143]
T-EBAnO is a prediction-local and class-based model-global explanation strategies tailored to deep natural-language models.
It provides an objective, human-readable, domain-specific assessment of the reasons behind the automatic decision-making process.
arXiv Detail & Related papers (2021-06-12T06:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.