Proto-lm: A Prototypical Network-Based Framework for Built-in
Interpretability in Large Language Models
- URL: http://arxiv.org/abs/2311.01732v2
- Date: Sun, 12 Nov 2023 04:28:43 GMT
- Title: Proto-lm: A Prototypical Network-Based Framework for Built-in
Interpretability in Large Language Models
- Authors: Sean Xie, Soroush Vosoughi and Saeed Hassanpour
- Abstract summary: Large Language Models (LLMs) have significantly advanced the field of Natural Language Processing (NLP), but their lack of interpretability has been a major concern.
In this work, we introduce proto-lm, a prototypical network-based white-box framework that allows LLMs to learn immediately interpretable embeddings.
Our method's applicability and interpretability are demonstrated through experiments on a wide range of NLP tasks, and our results indicate a new possibility of creating interpretable models without sacrificing performance.
- Score: 27.841725567976315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have significantly advanced the field of Natural
Language Processing (NLP), but their lack of interpretability has been a major
concern. Current methods for interpreting LLMs are post hoc, applied after
inference time, and have limitations such as their focus on low-level features
and lack of explainability at higher level text units. In this work, we
introduce proto-lm, a prototypical network-based white-box framework that
allows LLMs to learn immediately interpretable embeddings during the
fine-tuning stage while maintaining competitive performance. Our method's
applicability and interpretability are demonstrated through experiments on a
wide range of NLP tasks, and our results indicate a new possibility of creating
interpretable models without sacrificing performance. This novel approach to
interpretability in LLMs can pave the way for more interpretable models without
the need to sacrifice performance.
Related papers
- Crafting Large Language Models for Enhanced Interpretability [11.453164927352615]
Concept Bottleneck Large Language Model (CB-LLM) is a pioneering approach to creating inherently interpretable Large Language Models (LLMs)
CB-LLM sets a new standard with its built-in interpretability, scalability, and ability to provide clear, accurate explanations.
arXiv Detail & Related papers (2024-07-05T07:22:44Z) - Large Language Models are Interpretable Learners [53.56735770834617]
In this paper, we show a combination of Large Language Models (LLMs) and symbolic programs can bridge the gap between expressiveness and interpretability.
The pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts.
As the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable) and other LLMs.
arXiv Detail & Related papers (2024-06-25T02:18:15Z) - Learning to Reduce: Optimal Representations of Structured Data in
Prompting Large Language Models [42.16047343029512]
Large Language Models (LLMs) have been widely used as general-purpose AI agents.
We propose a framework, Learning to Reduce, that fine-tunes a language model to generate a reduced version of an input context.
We show that our model achieves comparable accuracies in selecting the relevant evidence from an input context.
arXiv Detail & Related papers (2024-02-22T00:41:23Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
Large Language Models (LLMs) have achieved unprecedented breakthroughs in various natural language processing domains.
The enigmatic black-box'' nature of LLMs remains a significant challenge for interpretability, hampering transparent and accountable applications.
We propose a novel methodology anchored in sparsity-guided techniques, aiming to provide a holistic interpretation of LLMs.
arXiv Detail & Related papers (2023-12-22T19:55:58Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - Generation-driven Contrastive Self-training for Zero-shot Text Classification with Instruction-following LLM [31.25193238045053]
We introduce a novel method, namely GenCo, which leverages the strong generative power of large language models to assist in training a smaller language model.
In our method, an LLM plays an important role in the self-training loop of a smaller model in two important ways.
It helps crafting additional high-quality training pairs, by rewriting input texts conditioned on predicted labels.
arXiv Detail & Related papers (2023-04-24T07:35:38Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
In recent years, pre-trained large language models (LLMs) have demonstrated remarkable efficiency in achieving an inference-time few-shot learning capability known as in-context learning.
This study aims to examine the in-context learning phenomenon through a Bayesian lens, viewing real-world LLMs as latent variable models.
arXiv Detail & Related papers (2023-01-27T18:59:01Z) - Masked Language Modeling and the Distributional Hypothesis: Order Word
Matters Pre-training for Little [74.49773960145681]
A possible explanation for the impressive performance of masked language model (MLM)-training is that such models have learned to represent the syntactic structures prevalent in NLP pipelines.
In this paper, we propose a different explanation: pre-trains succeed on downstream tasks almost entirely due to their ability to model higher-order word co-occurrence statistics.
Our results show that purely distributional information largely explains the success of pre-training, and underscore the importance of curating challenging evaluation datasets that require deeper linguistic knowledge.
arXiv Detail & Related papers (2021-04-14T06:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.