Spectroscopic footprints of quantum friction in nonreciprocal and chiral media
- URL: http://arxiv.org/abs/2412.18044v1
- Date: Mon, 23 Dec 2024 23:39:10 GMT
- Title: Spectroscopic footprints of quantum friction in nonreciprocal and chiral media
- Authors: O. J. Franca, Fabian Spallek, Steffen Giesen, Robert Berger, Kilian Singer, Stefan Aull, Stefan Yoshi Buhmann,
- Abstract summary: We investigate how the quantum friction experienced by a polarizable atom moving with constant velocity parallel to a planar interface is modified when the latter consists of chiral or nonreciprocal media.
We use macroscopic quantum electrodynamics to obtain the velocity-dependent Casimir-Polder frequency shift and decay rate.
- Score: 0.0
- License:
- Abstract: We investigate how the quantum friction experienced by a polarizable atom moving with constant velocity parallel to a planar interface is modified when the latter consists of chiral or nonreciprocal media, with special focus on topological insulators. We use macroscopic quantum electrodynamics to obtain the velocity-dependent Casimir-Polder frequency shift and decay rate. These results are a generalization to matter with time-reversal symmetry breaking. We illustrate our findings by examining the nonretarded and retarded limits for five examples: a perfectly conducting mirror, a perfectly reflecting nonreciprocal mirror, a three-dimensional topological insulator, a perfectly reflecting chiral mirror and an isotropic chiral medium. We find different asymptotic power laws for all these materials. Interestingly, we find two bridges between chirality and nonreciprocity through the frequency shift that arise as a consequence of the magnetoelectric coupling. Namely, the position-dependent Casimir-Polder frequency shift for the nonreciprocal case depend on a geometric magnetic field associated with photoionization of chiral molecules, the Casimir-Polder depending on the velocities for the chiral case have the optical rotatory strength as the atomic response while those for the nonreciprocal case depend on an analog of the optical rotatory strength.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - A Universal Roadmap For Searching Repulsive Casimir Forces Between
Magneto-Electric Materials [0.0]
We calculate the Casimir forces between materials with time-reversal symmetry and/or parity symmetry breaking.
We obtain a universal phase diagram governing the sign of symmetry-breaking-induced Casimir forces.
arXiv Detail & Related papers (2024-03-01T18:41:04Z) - Chirality-induced emergent spin-orbit coupling in topological atomic lattices [0.0]
We show that optical excitations in lattices of V-type atoms exhibit an emergent spin-orbit coupling when the geometry is chiral.
We demonstrate that chirality-induced spin-orbit coupling can result from either the chirality of the underlying lattice geometry or the combination of an achiral lattice with a suitably chosen external quantization axis.
arXiv Detail & Related papers (2023-11-15T19:00:13Z) - Probing Electromagnetic Nonreciprocity with Quantum Geometry of Photonic
States [0.0]
We propose a contact-less detection using a cross-cavity device where a material of interest is placed at its centre.
We show that the optical properties of the material, such as Kerr and Faraday rotation, manifest in the coupling between the cavities' electromagnetic modes and in the shift of their resonant frequencies.
Our approach is expected to be applicable across a broad spectrum of experimental platforms including Fock states in optical cavities, or, coherent states in microwave and THz resonators.
arXiv Detail & Related papers (2023-10-24T20:37:09Z) - Observation of mHz-level cooperative Lamb shifts in an optical atomic
clock [0.7095350526841508]
We show that the ensemble-averaged shifts can be suppressed below the level of evaluated systematic uncertainties for state-of-the-art optical atomic clocks.
Our work demonstrates that such a clock is a novel platform for studies of the quantum many-body physics of spins with long-range interactions mediated by propagating photons.
arXiv Detail & Related papers (2023-03-09T23:04:46Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Toroidal optical transitions in hydrogen-like atoms [0.0]
We show that interactions between light and matter also involve toroidal multipoles.
We show that toroidal transitions are odd under parity and time-reversal symmetries.
arXiv Detail & Related papers (2022-05-03T10:55:25Z) - Fast electrons interacting with chiral matter: mirror symmetry breaking
of quantum decoherence and lateral momentum transfer [91.3755431537592]
We show that matter chirality breaks mirror symmetry of scattered electrons quantum decoherence.
We also prove that mirror asymmetry also shows up in the distribution of the electron lateral momentum.
arXiv Detail & Related papers (2022-04-07T15:06:27Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Optical Magnetometer: Quantum Resonances at pumping repetition rate of
1/n of the Larmor frequency [58.720142291102135]
Quantum sub-resonances at a repetition rate of $1/n$ of the Larmor frequency of the magnetic field inside the shield are experimentally observed and theoretically explained.
Investigations in single alkali atoms cells as well as mixed alkali atoms of K and Rb are presented.
arXiv Detail & Related papers (2020-02-20T09:14:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.