Observation of mHz-level cooperative Lamb shifts in an optical atomic
clock
- URL: http://arxiv.org/abs/2303.05613v1
- Date: Thu, 9 Mar 2023 23:04:46 GMT
- Title: Observation of mHz-level cooperative Lamb shifts in an optical atomic
clock
- Authors: Ross B. Hutson, William R. Milner, Lingfeng Yan, Jun Ye, and Christian
Sanner
- Abstract summary: We show that the ensemble-averaged shifts can be suppressed below the level of evaluated systematic uncertainties for state-of-the-art optical atomic clocks.
Our work demonstrates that such a clock is a novel platform for studies of the quantum many-body physics of spins with long-range interactions mediated by propagating photons.
- Score: 0.7095350526841508
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We report on the direct observation of resonant electric dipole-dipole
interactions in a cubic array of atoms in the many-excitation limit. The
interactions, mediated by single-atom couplings to the shared electromagnetic
vacuum, are shown to produce spatially-dependent cooperative Lamb shifts when
spectroscopically interrogating the mHz-wide optical clock transition in
strontium-87. We show that the ensemble-averaged shifts can be suppressed below
the level of evaluated systematic uncertainties for state-of-the-art optical
atomic clocks. Additionally, we demonstrate that excitation of the atomic
dipoles near a Bragg angle can enhance these effects by nearly an order of
magnitude compared to non-resonant geometries. Given the remarkable precision
of frequency measurements and the high accuracy of the modeled response, our
work demonstrates that such a clock is a novel platform for studies of the
quantum many-body physics of spins with long-range interactions mediated by
propagating photons.
Related papers
- Many-body gap protection of motional dephasing of an optical clock transition [0.0]
Quantum simulation and metrology with atoms, ions, and molecules often rely on using light fields to manipulate their internal states.
absorbed momentum from the light fields can induce spin-orbit coupling and associated motional-induced (Doppler) dephasing.
We experimentally demonstrate the suppression of Doppler dephasing on a strontium optical clock transition by enabling atomic interactions through a shared mode.
arXiv Detail & Related papers (2024-09-24T17:37:47Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Multidimensional Coherent Spectroscopy of Molecular Polaritons: Langevin
Approach [0.0]
We present a microscopic theory for nonlinear optical spectroscopy of N molecules in an optical cavity.
A quantum Langevin analytical expression is derived for the time- and frequency-resolved signals accounting for arbitrary numbers of vibrational excitations.
arXiv Detail & Related papers (2022-10-24T16:10:25Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Bosonic pair production and squeezing for optical phase measurements in
long-lived dipoles coupled to a cavity [0.0]
Entanglement between atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast.
We propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles)
Our proposal can open unique opportunities for the observation of continuous variable entanglement in atomic systems and associated applications in next-generation optical atomic clocks.
arXiv Detail & Related papers (2022-04-27T17:39:08Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Observation of quasiparticle pair-production and quantum entanglement in
atomic quantum gases quenched to an attractive interaction [0.0]
We report observation of quasiparticle pair-production and characterize quantum entanglement created by a modulational instability in an atomic superfluid.
By quenching the atomic interaction to attractive and then back to weakly repulsive, we produce correlated quasiparticles.
We observe large amplitude growth in the power spectrum and subsequent coherent oscillations in a wide spatial frequency band within our resolution limit.
arXiv Detail & Related papers (2021-02-22T17:45:04Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.