論文の概要: AutoDroid-V2: Boosting SLM-based GUI Agents via Code Generation
- arxiv url: http://arxiv.org/abs/2412.18116v2
- Date: Thu, 26 Dec 2024 13:52:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:27:01.150371
- Title: AutoDroid-V2: Boosting SLM-based GUI Agents via Code Generation
- Title(参考訳): AutoDroid-V2: コード生成によるSLMベースのGUIエージェントの強化
- Authors: Hao Wen, Shizuo Tian, Borislav Pavlov, Wenjie Du, Yixuan Li, Ge Chang, Shanhui Zhao, Jiacheng Liu, Yunxin Liu, Ya-Qin Zhang, Yuanchun Li,
- Abstract要約: 大きな言語モデル(LLM)は、モバイルUIエージェントにエキサイティングな新しい進歩をもたらした。
必要なモデルサイズを減らす方法の1つは、小さなドメイン固有のモデルをカスタマイズすることです。
本稿では,UIタスクの自動化問題をコード生成問題に変換することを提案する。
- 参考スコア(独自算出の注目度): 27.984521240600493
- License:
- Abstract: Large language models (LLMs) have brought exciting new advances to mobile UI agents, a long-standing research field that aims to complete arbitrary natural language tasks through mobile UI interactions. However, existing UI agents usually demand high reasoning capabilities of powerful large models that are difficult to be deployed locally on end-users' devices, which raises huge concerns about user privacy and centralized serving cost. One way to reduce the required model size is to customize a smaller domain-specific model with high-quality training data, e.g. large-scale human demonstrations of diverse types of apps and tasks, while such datasets are extremely difficult to obtain. Inspired by the remarkable coding abilities of recent small language models (SLMs), we propose to convert the UI task automation problem to a code generation problem, which can be effectively solved by an on-device SLM and efficiently executed with an on-device code interpreter. Unlike normal coding tasks that can be extensively pretrained with public datasets, generating UI automation code is challenging due to the diversity, complexity, and variability of target apps. Therefore, we adopt a document-centered approach that automatically builds fine-grained API documentation for each app and generates diverse task samples based on this documentation. By guiding the agent with the synthetic documents and task samples, it learns to generate precise and efficient scripts to complete unseen tasks. Based on detailed comparisons with state-of-the-art mobile UI agents, our approach effectively improves the mobile task automation with significantly higher success rates and lower latency/token consumption. Code will be open-sourced.
- Abstract(参考訳): 大規模な言語モデル(LLM)は、モバイルUIインタラクションを通じて任意の自然言語タスクを完了することを目的とした、長年にわたる研究分野であるモバイルUIエージェントに、エキサイティングな新たな進歩をもたらした。
しかし、既存のUIエージェントは通常、エンドユーザのデバイスにローカルにデプロイするのが困難である強力な大規模モデルの高い推論能力を要求するため、ユーザのプライバシと集中的なサービスコストに対する大きな懸念が生じる。
必要なモデルサイズを減らす方法の1つは、高品質なトレーニングデータを備えた小さなドメイン固有モデルをカスタマイズすることである。
近年の小型言語モデル(SLM)の顕著なコーディング能力に着想を得て,UIタスク自動化問題を,デバイス上でのSLMで効果的に解き,デバイス上でのコードインタプリタで効率的に実行可能なコード生成問題に変換することを提案する。
公開データセットで広範囲に事前トレーニング可能な通常のコーディングタスクとは異なり、UI自動化コードの生成は、ターゲットアプリの多様性、複雑性、可変性のために難しい。
そこで我々は,各アプリ用の細粒度APIドキュメンテーションを自動的に構築し,このドキュメンテーションに基づいて多様なタスクサンプルを生成する,ドキュメント中心のアプローチを採用した。
エージェントに合成文書とタスクサンプルを導くことで、見知らぬタスクを完了させるために、正確で効率的なスクリプトを生成することを学ぶ。
最新のモバイルUIエージェントとの詳細な比較に基づいて,本手法はモバイルタスクの自動化を効果的に改善し,高い成功率と低レイテンシ/トーケン消費を実現した。
コードはオープンソース化される。
関連論文リスト
- CAMPHOR: Collaborative Agents for Multi-input Planning and High-Order Reasoning On Device [2.4100803794273005]
本稿では、複数のユーザ入力を処理し、個人的コンテキストを局所的に理性的に扱うように設計された、オンデバイス・スモールランゲージ・モデル(SLM)フレームワークを提案する。
CAMPHORは階層的アーキテクチャを採用しており、高階推論エージェントは複雑なタスクを分解し、個人のコンテキスト検索、ツールインタラクション、動的プラン生成に責任を持つ専門家エージェントを調整する。
エージェント間でパラメータ共有を実装し、即時圧縮を活用することにより、モデルサイズ、レイテンシ、メモリ使用量を大幅に削減する。
論文 参考訳(メタデータ) (2024-10-12T07:28:10Z) - ClickAgent: Enhancing UI Location Capabilities of Autonomous Agents [0.0]
ClickAgentは、自律エージェントを構築するための新しいフレームワークである。
ClickAgentでは、MLLMが推論とアクションプランニングを処理し、別のUIロケーションモデルが画面上の関連するUI要素を識別する。
本評価は,Androidスマートフォンエミュレータと実際のAndroidスマートフォンの両方で実施し,タスク成功率をエージェント性能測定の指標として用いた。
論文 参考訳(メタデータ) (2024-10-09T14:49:02Z) - AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - Spider2-V: How Far Are Multimodal Agents From Automating Data Science and Engineering Workflows? [73.81908518992161]
我々は、プロのデータサイエンスとエンジニアリングに焦点を当てた最初のマルチモーダルエージェントベンチマークであるSpider2-Vを紹介する。
Spider2-Vは、本物のコンピュータ環境における現実世界のタスクを特徴とし、20のエンタープライズレベルのプロフェッショナルアプリケーションを組み込んでいる。
これらのタスクは、エンタープライズデータソフトウェアシステムにおいて、コードを書き、GUIを管理することで、マルチモーダルエージェントがデータ関連のタスクを実行する能力を評価する。
論文 参考訳(メタデータ) (2024-07-15T17:54:37Z) - CAAP: Context-Aware Action Planning Prompting to Solve Computer Tasks with Front-End UI Only [21.054681757006385]
本稿では,スクリーンショット画像のみを通して環境を知覚するエージェントを提案する。
大規模言語モデルの推論能力を活用することで,大規模人間の実演データの必要性を解消する。
AgentはMiniWoB++の平均成功率は94.5%、WebShopの平均タスクスコアは62.3である。
論文 参考訳(メタデータ) (2024-06-11T05:21:20Z) - Mobile-Agent-v2: Mobile Device Operation Assistant with Effective Navigation via Multi-Agent Collaboration [52.25473993987409]
モバイルデバイス操作支援のためのマルチエージェントアーキテクチャであるMobile-Agent-v2を提案する。
アーキテクチャは、計画エージェント、決定エージェント、反射エージェントの3つのエージェントから構成される。
単一エージェントアーキテクチャと比較して,Mobile-Agent-v2ではタスク完了率が30%以上向上していることを示す。
論文 参考訳(メタデータ) (2024-06-03T05:50:00Z) - Benchmarking Mobile Device Control Agents across Diverse Configurations [19.01954948183538]
B-MoCAは、モバイルデバイス制御エージェントの評価と開発のためのベンチマークである。
我々は,大規模言語モデル (LLM) やマルチモーダル LLM を用いたエージェントを含む多種多様なエージェントをベンチマークする。
これらのエージェントは、簡単なタスクの実行の熟練度を示す一方で、複雑なタスクにおけるパフォーマンスの低さは、将来の研究が有効性を改善するための重要な機会を浮き彫りにしている。
論文 参考訳(メタデータ) (2024-04-25T14:56:32Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Reinforced UI Instruction Grounding: Towards a Generic UI Task
Automation API [17.991044940694778]
汎用的なUIタスク自動化エグゼキュータとして、与えられたUIスクリーンショットに自然言語命令をベースとしたマルチモーダルモデルを構築します。
画像からテキストまでの事前学習知識の活用を容易にするため,画素からシーケンスまでのパラダイムを踏襲する。
提案する強化UI命令グラウンドモデルでは,最先端の手法よりも明確なマージンで性能が向上する。
論文 参考訳(メタデータ) (2023-10-07T07:22:41Z) - AutoML-GPT: Automatic Machine Learning with GPT [74.30699827690596]
本稿では,タスク指向のプロンプトを開発し,大規模言語モデル(LLM)を自動的に活用して学習パイプラインを自動化することを提案する。
本稿では,多様なAIモデルのブリッジとしてGPTを用いたAutoML-GPTを提案する。
このアプローチはコンピュータビジョン、自然言語処理、その他の課題領域において顕著な結果をもたらす。
論文 参考訳(メタデータ) (2023-05-04T02:09:43Z) - OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge
Collaborative AutoML System [85.8338446357469]
我々は人間中心のAutoMLシステムであるOmniForceを紹介した。
我々は、OmniForceがAutoMLシステムを実践し、オープン環境シナリオにおける適応型AIを構築する方法について説明する。
論文 参考訳(メタデータ) (2023-03-01T13:35:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。