Exact Acceleration of Subgraph Graph Neural Networks by Eliminating Computation Redundancy
- URL: http://arxiv.org/abs/2412.18125v1
- Date: Tue, 24 Dec 2024 03:21:03 GMT
- Title: Exact Acceleration of Subgraph Graph Neural Networks by Eliminating Computation Redundancy
- Authors: Qian Tao, Xiyuan Wang, Muhan Zhang, Shuxian Hu, Wenyuan Yu, Jingren Zhou,
- Abstract summary: This paper introduces Ego-Nets-Fit-All (ENFA), a model that uniformly takes the smaller ego nets as subgraphs.
ENFA can reduce storage space by 29.0% to 84.5% and improve training efficiency by up to 1.66x.
- Score: 49.233339837170895
- License:
- Abstract: Graph neural networks (GNNs) have become a prevalent framework for graph tasks. Many recent studies have proposed the use of graph convolution methods over the numerous subgraphs of each graph, a concept known as subgraph graph neural networks (subgraph GNNs), to enhance GNNs' ability to distinguish non-isomorphic graphs. To maximize the expressiveness, subgraph GNNs often require each subgraph to have equal size to the original graph. Despite their impressive performance, subgraph GNNs face challenges due to the vast number and large size of subgraphs which lead to a surge in training data, resulting in both storage and computational inefficiencies. In response to this problem, this paper introduces Ego-Nets-Fit-All (ENFA), a model that uniformly takes the smaller ego nets as subgraphs, thereby providing greater storage and computational efficiency, while at the same time guarantees identical outputs to the original subgraph GNNs even taking the whole graph as subgraphs. The key is to identify and eliminate the redundant computation among subgraphs. For example, a node $v_i$ may appear in multiple subgraphs but is far away from all of their centers (the unsymmetric part between subgraphs). Therefore, its first few rounds of message passing within each subgraph can be computed once in the original graph instead of being computed multiple times within each subgraph. Such strategy enables our ENFA to accelerate subgraph GNNs in an exact way, unlike previous sampling approaches that often lose the performance. Extensive experiments across various datasets reveal that compared with the conventional subgraph GNNs, ENFA can reduce storage space by 29.0% to 84.5% and improve training efficiency by up to 1.66x.
Related papers
- A Flexible, Equivariant Framework for Subgraph GNNs via Graph Products and Graph Coarsening [18.688057947275112]
Subgraph Graph Neural Networks (Subgraph GNNs) enhance the expressivity of message-passing GNNs by representing graphs as sets of subgraphs.
Previous approaches suggested processing only subsets of subgraphs, selected either randomly or via learnable sampling.
This paper introduces a new Subgraph GNNs framework to address these issues.
arXiv Detail & Related papers (2024-06-13T16:29:06Z) - MAG-GNN: Reinforcement Learning Boosted Graph Neural Network [68.60884768323739]
A particular line of work proposed subgraph GNNs that use subgraph information to improve GNNs' expressivity and achieved great success.
Such effectivity sacrifices the efficiency of GNNs by enumerating all possible subgraphs.
We propose Magnetic Graph Neural Network (MAG-GNN), a reinforcement learning (RL) boosted GNN, to solve the problem.
arXiv Detail & Related papers (2023-10-29T20:32:21Z) - Stochastic Subgraph Neighborhood Pooling for Subgraph Classification [2.1270496914042996]
Subgraph Neighborhood Pooling (SSNP) jointly aggregates the subgraph and its neighborhood information without any computationally expensive operations such as labeling tricks.
Our experiments demonstrate that our models outperform current state-of-the-art methods (with a margin of up to 2%) while being up to 3X faster in training.
arXiv Detail & Related papers (2023-04-17T18:49:18Z) - An Efficient Subgraph GNN with Provable Substructure Counting Power [32.44487589958533]
We investigate the enhancement of graph neural networks' (GNNs) representation power through their ability in substructure counting.
Recent advances have seen the adoption of subgraph GNNs, which partition an input graph into numerous subgraphs, subsequently applying GNNs to each to augment the graph's overall representation.
Despite their ability to identify various substructures, subgraph GNNs are hindered by significant computational and memory costs.
arXiv Detail & Related papers (2023-03-19T05:35:59Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - A Unified Lottery Ticket Hypothesis for Graph Neural Networks [82.31087406264437]
We present a unified GNN sparsification (UGS) framework that simultaneously prunes the graph adjacency matrix and the model weights.
We further generalize the popular lottery ticket hypothesis to GNNs for the first time, by defining a graph lottery ticket (GLT) as a pair of core sub-dataset and sparse sub-network.
arXiv Detail & Related papers (2021-02-12T21:52:43Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - Scaling Graph Neural Networks with Approximate PageRank [64.92311737049054]
We present the PPRGo model which utilizes an efficient approximation of information diffusion in GNNs.
In addition to being faster, PPRGo is inherently scalable, and can be trivially parallelized for large datasets like those found in industry settings.
We show that training PPRGo and predicting labels for all nodes in this graph takes under 2 minutes on a single machine, far outpacing other baselines on the same graph.
arXiv Detail & Related papers (2020-07-03T09:30:07Z) - CoSimGNN: Towards Large-scale Graph Similarity Computation [5.17905821006887]
Graph Neural Networks (GNNs) provide a data-driven solution for this task.
Existing GNN-based methods, which either respectively embeds two graphs or deploy cross-graph interactions for whole graph pairs, are still not able to achieve competitive results.
We propose the "embedding-coarsening-matching" framework CoSimGNN, which first embeds and coarsens large graphs with adaptive pooling operation and then deploys fine-grained interactions on the coarsened graphs for final similarity scores.
arXiv Detail & Related papers (2020-05-14T16:33:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.