Distributed Graph Neural Network Inference With Just-In-Time Compilation For Industry-Scale Graphs
- URL: http://arxiv.org/abs/2503.06208v1
- Date: Sat, 08 Mar 2025 13:26:59 GMT
- Title: Distributed Graph Neural Network Inference With Just-In-Time Compilation For Industry-Scale Graphs
- Authors: Xiabao Wu, Yongchao Liu, Wei Qin, Chuntao Hong,
- Abstract summary: Graph neural networks (GNNs) have delivered remarkable results in various fields.<n>The rapid increase in the scale of graph data has introduced significant performance bottlenecks for GNN inference.<n>This paper introduces an innovative processing paradgim for distributed graph learning that abstracts GNNs with a new set of programming interfaces.
- Score: 6.924892368183222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have delivered remarkable results in various fields. However, the rapid increase in the scale of graph data has introduced significant performance bottlenecks for GNN inference. Both computational complexity and memory usage have risen dramatically, with memory becoming a critical limitation. Although graph sampling-based subgraph learning methods can help mitigate computational and memory demands, they come with drawbacks such as information loss and high redundant computation among subgraphs. This paper introduces an innovative processing paradgim for distributed graph learning that abstracts GNNs with a new set of programming interfaces and leverages Just-In-Time (JIT) compilation technology to its full potential. This paradigm enables GNNs to highly exploit the computational resources of distributed clusters by eliminating the drawbacks of subgraph learning methods, leading to a more efficient inference process. Our experimental results demonstrate that on industry-scale graphs of up to \textbf{500 million nodes and 22.4 billion edges}, our method can produce a performance boost of up to \textbf{27.4 times}.
Related papers
- OMEGA: A Low-Latency GNN Serving System for Large Graphs [8.51634655687174]
Graph Neural Networks (GNNs) have been widely adopted for their ability to compute expressive node representations in graph datasets.<n>Existing approximation techniques in training can mitigate the overheads but, in serving, still lead to high latency and/or accuracy loss.<n>We propose OMEGA, a system that enables low-latency GNN serving for large graphs with minimal accuracy loss.
arXiv Detail & Related papers (2025-01-15T03:14:18Z) - MassiveGNN: Efficient Training via Prefetching for Massively Connected Distributed Graphs [11.026326555186333]
This paper develops a parameterized continuous prefetch and eviction scheme on top of the state-of-the-art Amazon DistDGL distributed GNN framework.
It demonstrates about 15-40% improvement in end-to-end training performance on the National Energy Research Scientific Computing Center's (NERSC) Perlmutter supercomputer.
arXiv Detail & Related papers (2024-10-30T05:10:38Z) - FIT-GNN: Faster Inference Time for GNNs Using Coarsening [1.323700980948722]
coarsening-based methods are used to reduce the graph into a smaller graph, resulting in faster computation.<n>Prior research has not adequately addressed the computational costs during the inference phase.<n>This paper presents a novel approach to improve the scalability of GNNs by reducing computational burden during both training and inference phases.
arXiv Detail & Related papers (2024-10-19T06:27:24Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - SCARA: Scalable Graph Neural Networks with Feature-Oriented Optimization [23.609017952951454]
We propose SCARA, a scalable Graph Neural Network (GNN) with feature-oriented optimization for graph computation.
SCARA efficiently computes graph embedding from node features, and further selects and reuses feature results to reduce overhead.
It is efficient to process precomputation on the largest available billion-scale GNN dataset Papers100M (111M nodes, 1.6B edges) in 100 seconds.
arXiv Detail & Related papers (2022-07-19T10:32:11Z) - Comprehensive Graph Gradual Pruning for Sparse Training in Graph Neural
Networks [52.566735716983956]
We propose a graph gradual pruning framework termed CGP to dynamically prune GNNs.
Unlike LTH-based methods, the proposed CGP approach requires no re-training, which significantly reduces the computation costs.
Our proposed strategy greatly improves both training and inference efficiency while matching or even exceeding the accuracy of existing methods.
arXiv Detail & Related papers (2022-07-18T14:23:31Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - GraphTheta: A Distributed Graph Neural Network Learning System With
Flexible Training Strategy [5.466414428765544]
We present a new distributed graph learning system GraphTheta.
It supports multiple training strategies and enables efficient and scalable learning on big graphs.
This work represents the largest edge-attributed GNN learning task conducted on a billion-scale network in the literature.
arXiv Detail & Related papers (2021-04-21T14:51:33Z) - Scaling Graph Neural Networks with Approximate PageRank [64.92311737049054]
We present the PPRGo model which utilizes an efficient approximation of information diffusion in GNNs.
In addition to being faster, PPRGo is inherently scalable, and can be trivially parallelized for large datasets like those found in industry settings.
We show that training PPRGo and predicting labels for all nodes in this graph takes under 2 minutes on a single machine, far outpacing other baselines on the same graph.
arXiv Detail & Related papers (2020-07-03T09:30:07Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGAT is a method to make attention based GNNs lightweight by using spectral sparsification to generate an optimal pruning of the input graph.
We experimentally evaluate FastGAT on several large real world graph datasets for node classification tasks.
arXiv Detail & Related papers (2020-06-15T22:07:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.