論文の概要: Text-Aware Adapter for Few-Shot Keyword Spotting
- arxiv url: http://arxiv.org/abs/2412.18142v1
- Date: Tue, 24 Dec 2024 03:54:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:01.484083
- Title: Text-Aware Adapter for Few-Shot Keyword Spotting
- Title(参考訳): Few-Shotキーワードスポッティングのためのテキスト認識アダプタ
- Authors: Youngmoon Jung, Jinyoung Lee, Seungjin Lee, Myunghun Jung, Yong-Hyeok Lee, Hoon-Young Cho,
- Abstract要約: テキスト・アウェア・アダプタ(TA-adapter)と呼ばれる新しい数発転写学習手法を提案する。
実験では、TA-adapterは、Google Speech Commands V2データセットから35の異なるキーワードに対して、大幅なパフォーマンス向上を示した。
- 参考スコア(独自算出の注目度): 13.040457187781671
- License:
- Abstract: Recent advances in flexible keyword spotting (KWS) with text enrollment allow users to personalize keywords without uttering them during enrollment. However, there is still room for improvement in target keyword performance. In this work, we propose a novel few-shot transfer learning method, called text-aware adapter (TA-adapter), designed to enhance a pre-trained flexible KWS model for specific keywords with limited speech samples. To adapt the acoustic encoder, we leverage a jointly pre-trained text encoder to generate a text embedding that acts as a representative vector for the keyword. By fine-tuning only a small portion of the network while keeping the core components' weights intact, the TA-adapter proves highly efficient for few-shot KWS, enabling a seamless return to the original pre-trained model. In our experiments, the TA-adapter demonstrated significant performance improvements across 35 distinct keywords from the Google Speech Commands V2 dataset, with only a 0.14% increase in the total number of parameters.
- Abstract(参考訳): テキスト入力によるフレキシブルキーワードスポッティング(KWS)の最近の進歩は、ユーザーが入力中に発声することなくキーワードをパーソナライズすることを可能にする。
しかし、ターゲットキーワードのパフォーマンスは改善の余地がある。
本研究では,限定された音声サンプルを持つ特定のキーワードに対して,事前訓練された柔軟なKWSモデルを強化するために,テキスト認識アダプタ (TA-adapter) と呼ばれる新しい数発転写学習手法を提案する。
音響エンコーダを適応させるために,共同で事前学習したテキストエンコーダを用いて,キーワードの代用ベクトルとして機能するテキスト埋め込みを生成する。
コアコンポーネントの重みを保ちながらネットワークのごく一部だけを微調整することにより、TAアダプタは数ショットのKWSに対して高い効率を証明し、元のトレーニング済みモデルへのシームレスな復帰を可能にする。
実験では、TA-adapterは、Google Speech Commands V2データセットから35の異なるキーワードに対して大幅なパフォーマンス向上を示し、パラメータの総数は0.14%に過ぎなかった。
関連論文リスト
- Retrieval is Accurate Generation [99.24267226311157]
本稿では,支援文書の集合からコンテキスト認識句を選択する新しい手法を提案する。
本モデルでは,検索対象のベースラインの中で,最高の性能と低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-02-27T14:16:19Z) - Open-vocabulary Keyword-spotting with Adaptive Instance Normalization [18.250276540068047]
本稿では,キーワード条件付き正規化パラメータを出力するためにテキストエンコーダを訓練するキーワードスポッティングの新しい手法であるAdaKWSを提案する。
近年のキーワードスポッティングやASRベースラインよりも大幅に改善されている。
論文 参考訳(メタデータ) (2023-09-13T13:49:42Z) - Evolutionary Verbalizer Search for Prompt-based Few Shot Text
Classification [5.583948835737293]
提案手法は,提案手法を改良した新しい進化型動詞処理アルゴリズムであるEVSを提案する。
本稿では,最適な動詞処理器を自動構築することに集中し,高速な動詞処理器を用いたプロンプトベースチューニングを改善するための新しいEVSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-18T10:03:11Z) - Three ways to improve feature alignment for open vocabulary detection [88.65076922242184]
ゼロショットオープンボキャブラリ検出の鍵となる問題は、視覚的特徴とテキスト的特徴の整合性である。
以前のアプローチでは、特徴ピラミッドと検出ヘッドをゼロからトレーニングし、事前トレーニング中に確立された視覚テキストの特徴アライメントを壊す。
本稿では,これらの問題を緩和する3つの方法を提案する。まず,テキストの埋め込みを強化するための簡単なスキームを用いて,学習中に見られる少数のクラスへの過度な適合を防止する。
次に、特徴ピラミッドネットワークと検出ヘッドをトレーニング可能なショートカットを含むように変更する。
最後に、より大きなコーパスを活用するために、自己学習アプローチが使用される。
論文 参考訳(メタデータ) (2023-03-23T17:59:53Z) - PatternRank: Leveraging Pretrained Language Models and Part of Speech
for Unsupervised Keyphrase Extraction [0.6767885381740952]
本稿では,1つの文書から教師なしキーフレーズを抽出するために,事前訓練された言語モデルとパート・オブ・音声を提供するPatternRankを提案する。
実験の結果,PatternRankは従来の最先端手法よりも高精度,リコール,F1スコアを実現していることがわかった。
論文 参考訳(メタデータ) (2022-10-11T08:23:54Z) - Wav2Seq: Pre-training Speech-to-Text Encoder-Decoder Models Using Pseudo
Languages [58.43299730989809]
本稿では,音声データに対するエンコーダ・デコーダモデルの両部分を事前学習するための,最初の自己教師型アプローチであるWav2Seqを紹介する。
我々は、コンパクトな離散表現として擬似言語を誘導し、自己教師付き擬似音声認識タスクを定式化する。
このプロセスは独自のものであり、低コストの第2段階のトレーニングとして適用することができる。
論文 参考訳(メタデータ) (2022-05-02T17:59:02Z) - Vision-Language Pre-Training for Boosting Scene Text Detectors [57.08046351495244]
シーンテキスト検出に視覚言語を用いた共同学習を特に応用する。
本稿では,視覚言語による事前学習を通して,文脈化された共同表現を学習することを提案する。
事前訓練されたモデルは、よりリッチなセマンティクスでより情報的な表現を生成することができる。
論文 参考訳(メタデータ) (2022-04-29T03:53:54Z) - Learning Rich Representation of Keyphrases from Text [12.698835743464313]
テキスト文書からキーフレーズの表現を豊かに学習することを目的としたタスク固有言語モデルの学習方法を示す。
差別的設定では、新しい事前学習目標である、KBIR(Keyphrase boundary Infilling with Replacement)を導入する。
生成設定では、入力テキストに関連するキーフレーズをCatSeqフォーマットで再現する、BART-KeyBARTの新しい事前学習設定を導入する。
論文 参考訳(メタデータ) (2021-12-16T01:09:51Z) - A study on the efficacy of model pre-training in developing neural
text-to-speech system [55.947807261757056]
本研究の目的は,モデル事前学習がTSシステム性能に肯定的に寄与する理由と方法を明らかにすることである。
トレーニング前のデータを元のサイズの1/8に減らすと,TSシステムは同等の性能が得られることがわかった。
論文 参考訳(メタデータ) (2021-10-08T02:09:28Z) - Meta-Learning with Variational Semantic Memory for Word Sense
Disambiguation [56.830395467247016]
メタ学習環境におけるWSDのセマンティックメモリモデルを提案する。
我々のモデルは階層的変動推論に基づいており、ハイパーネットワークを介して適応的なメモリ更新ルールを組み込んでいる。
極めて少ないシナリオでの効果的な学習を支援するために,本モデルがWSDで最先端の技術を数ショットで実現していることを示す。
論文 参考訳(メタデータ) (2021-06-05T20:40:01Z) - Teaching keyword spotters to spot new keywords with limited examples [6.251896411370577]
多数のキーワードを認識するタスクに基づいて事前学習した音声埋め込みモデルであるKeySEMを提案する。
KeySEMは、デプロイ後の学習とカスタマイズの容易さが望ましいオンデバイス環境に適している。
論文 参考訳(メタデータ) (2021-06-04T12:43:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。