論文の概要: scReader: Prompting Large Language Models to Interpret scRNA-seq Data
- arxiv url: http://arxiv.org/abs/2412.18156v1
- Date: Tue, 24 Dec 2024 04:28:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:56:20.580868
- Title: scReader: Prompting Large Language Models to Interpret scRNA-seq Data
- Title(参考訳): scReader: scRNA-seqデータの解釈に大規模な言語モデルを提案する
- Authors: Cong Li, Qingqing Long, Yuanchun Zhou, Meng Xiao,
- Abstract要約: 本稿では,大規模言語モデルの一般的な知識機能と,単一セルオミクスデータ解釈のためのドメイン固有表現モデルを統合する,革新的なハイブリッドアプローチを提案する。
単細胞遺伝子レベルでの遺伝子発現データをプロンプトで入力することにより、様々な種および細胞タイプにわたる遺伝子発現の差分レベルに基づいて、細胞表現を効果的にモデル化する。
- 参考スコア(独自算出の注目度): 12.767105992391555
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable advancements, primarily due to their capabilities in modeling the hidden relationships within text sequences. This innovation presents a unique opportunity in the field of life sciences, where vast collections of single-cell omics data from multiple species provide a foundation for training foundational models. However, the challenge lies in the disparity of data scales across different species, hindering the development of a comprehensive model for interpreting genetic data across diverse organisms. In this study, we propose an innovative hybrid approach that integrates the general knowledge capabilities of LLMs with domain-specific representation models for single-cell omics data interpretation. We begin by focusing on genes as the fundamental unit of representation. Gene representations are initialized using functional descriptions, leveraging the strengths of mature language models such as LLaMA-2. By inputting single-cell gene-level expression data with prompts, we effectively model cellular representations based on the differential expression levels of genes across various species and cell types. In the experiments, we constructed developmental cells from humans and mice, specifically targeting cells that are challenging to annotate. We evaluated our methodology through basic tasks such as cell annotation and visualization analysis. The results demonstrate the efficacy of our approach compared to other methods using LLMs, highlighting significant improvements in accuracy and interoperability. Our hybrid approach enhances the representation of single-cell data and offers a robust framework for future research in cross-species genetic analysis.
- Abstract(参考訳): 大規模言語モデル(LLM)は、主にテキストシーケンス内の隠れた関係をモデル化する能力によって、顕著な進歩を見せている。
この革新は、生命科学の分野でユニークな機会をもたらし、複数の種の単一細胞オミクスデータの膨大な収集が基礎モデルを訓練するための基盤となる。
しかし、この課題は、異なる種にわたるデータスケールの格差にあるため、多様な生物にわたって遺伝データを解釈する包括的モデルの開発を妨げる。
本研究では,LLMの一般的な知識能力と,単一セルオミクスデータ解釈のためのドメイン固有表現モデルを統合する,革新的なハイブリッド手法を提案する。
まず、遺伝子発現の基本単位としての遺伝子に焦点を当てる。
遺伝子表現は機能記述を用いて初期化され、LLaMA-2のような成熟した言語モデルの強みを利用する。
単細胞遺伝子レベルでの遺伝子発現データをプロンプトで入力することにより、様々な種および細胞タイプにわたる遺伝子発現の差分レベルに基づいて、細胞表現を効果的にモデル化する。
実験では,ヒトとマウスから発生細胞を作製し,特にアノテートが困難な細胞を標的とした。
我々は,細胞アノテーションや可視化解析などの基本的なタスクを通じて方法論を評価した。
その結果, LLMを用いた他の手法と比較して, 本手法の有効性が示され, 精度と相互運用性の大幅な向上が示された。
我々のハイブリッドアプローチは、単一細胞データの表現を強化し、種間遺伝子解析における将来の研究のための堅牢な枠組みを提供する。
関連論文リスト
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
本研究では,98k塩基対 (bp) と1.2Bパラメータからなるゲノム基盤モデルを提案する。
このモデルは分子生物学の中心的なドグマに固執し、タンパク質のコード配列を正確に生成する。
また、特にプロモーター配列の即応的な生成を通じて、シーケンス最適化において大きな可能性を示している。
論文 参考訳(メタデータ) (2025-02-11T05:39:49Z) - Single-Cell Omics Arena: A Benchmark Study for Large Language Models on Cell Type Annotation Using Single-Cell Data [13.56585855722118]
大規模言語モデル(LLM)は、テキストの膨大なコーパスを効率的に処理し、合成し、生物学的知識を自動的に抽出する能力を実証している。
本研究は、単一細胞RNAシークエンシング(scRNA-seq)データにおいて、細胞型を正確に分類し、アノテートするLLMの可能性を探るものである。
以上の結果から,LCMは微調整を必要とせずに単一セルデータの堅牢な解釈を実現できることが示された。
論文 参考訳(メタデータ) (2024-12-03T23:58:35Z) - Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
マルチモーダル単細胞数に対するフローベース条件生成モデルであるセルフロー・フォー・ジェネレーションを提案する。
本研究は, 新規な生成タスクを考慮に入れた上で, 重要な生物学的データ特性の回復性の向上を示唆するものである。
論文 参考訳(メタデータ) (2024-07-16T14:05:03Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
ゲノム配列に基づいて訓練されたブラックボックス深層学習モデルは、異なる遺伝子制御機構の結果を予測するのに優れている。
本稿では、遺伝的プログラミングを用いて、その意味的多様性に寄与する配列の摂動を進化させることによりデータセットを生成することを提案する。
論文 参考訳(メタデータ) (2024-07-03T10:31:30Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - scInterpreter: Training Large Language Models to Interpret scRNA-seq
Data for Cell Type Annotation [15.718901418627366]
本研究は、単一細胞RNAシークエンシングデータにおいて、細胞型を解釈し、区別する機能を備えた大規模言語モデルの訓練および適応方法に焦点を当てる。
論文 参考訳(メタデータ) (2024-02-18T05:39:00Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
一般化線形混合モデル(GLMM)とMultiple Instance Learning(MIL)を統合するフレームワークであるMixMILを紹介する。
実験結果から,MixMILは単一セルデータセットにおいて既存のMILモデルより優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-04T16:42:42Z) - Epigenomic language models powered by Cerebras [0.0]
エピゲノムBERT(またはEBERT)は、DNA配列とペア化されたエピジェネティック状態の入力の両方に基づいて表現を学習する。
細胞型特異的転写因子結合予測タスクにおいて,EBERTの転写学習能力を示す。
ENCODE-DREAMベンチマークから得られた13つの評価データセットのうち4つは、我々の微調整されたモデルであり、挑戦のリーダーボードでは総合3位である。
論文 参考訳(メタデータ) (2021-12-14T17:23:42Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。