scReader: Prompting Large Language Models to Interpret scRNA-seq Data
- URL: http://arxiv.org/abs/2412.18156v1
- Date: Tue, 24 Dec 2024 04:28:42 GMT
- Title: scReader: Prompting Large Language Models to Interpret scRNA-seq Data
- Authors: Cong Li, Qingqing Long, Yuanchun Zhou, Meng Xiao,
- Abstract summary: We propose an innovative hybrid approach that integrates the general knowledge capabilities of large language models with domain-specific representation models for single-cell omics data interpretation.
By inputting single-cell gene-level expression data with prompts, we effectively model cellular representations based on the differential expression levels of genes across various species and cell types.
- Score: 12.767105992391555
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable advancements, primarily due to their capabilities in modeling the hidden relationships within text sequences. This innovation presents a unique opportunity in the field of life sciences, where vast collections of single-cell omics data from multiple species provide a foundation for training foundational models. However, the challenge lies in the disparity of data scales across different species, hindering the development of a comprehensive model for interpreting genetic data across diverse organisms. In this study, we propose an innovative hybrid approach that integrates the general knowledge capabilities of LLMs with domain-specific representation models for single-cell omics data interpretation. We begin by focusing on genes as the fundamental unit of representation. Gene representations are initialized using functional descriptions, leveraging the strengths of mature language models such as LLaMA-2. By inputting single-cell gene-level expression data with prompts, we effectively model cellular representations based on the differential expression levels of genes across various species and cell types. In the experiments, we constructed developmental cells from humans and mice, specifically targeting cells that are challenging to annotate. We evaluated our methodology through basic tasks such as cell annotation and visualization analysis. The results demonstrate the efficacy of our approach compared to other methods using LLMs, highlighting significant improvements in accuracy and interoperability. Our hybrid approach enhances the representation of single-cell data and offers a robust framework for future research in cross-species genetic analysis.
Related papers
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.
The model adheres to the central dogma of molecular biology, accurately generating protein-coding sequences.
It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of promoter sequences.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - Single-Cell Omics Arena: A Benchmark Study for Large Language Models on Cell Type Annotation Using Single-Cell Data [13.56585855722118]
Large language models (LLMs) have demonstrated their ability to efficiently process and synthesize vast corpora of text to automatically extract biological knowledge.
Our study explores the potential of LLMs to accurately classify and annotate cell types in single-cell RNA sequencing (scRNA-seq) data.
The results demonstrate that LLMs can provide robust interpretations of single-cell data without requiring additional fine-tuning.
arXiv Detail & Related papers (2024-12-03T23:58:35Z) - Generating Multi-Modal and Multi-Attribute Single-Cell Counts with CFGen [76.02070962797794]
We present Cell Flow for Generation, a flow-based conditional generative model for multi-modal single-cell counts.
Our results suggest improved recovery of crucial biological data characteristics while accounting for novel generative tasks.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - Semantically Rich Local Dataset Generation for Explainable AI in Genomics [0.716879432974126]
Black box deep learning models trained on genomic sequences excel at predicting the outcomes of different gene regulatory mechanisms.
We propose using Genetic Programming to generate datasets by evolving perturbations in sequences that contribute to their semantic diversity.
arXiv Detail & Related papers (2024-07-03T10:31:30Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - scInterpreter: Training Large Language Models to Interpret scRNA-seq
Data for Cell Type Annotation [15.718901418627366]
This research focuses on how to train and adapt the Large Language Model with the capability to interpret and distinguish cell types in single-cell RNA sequencing data.
arXiv Detail & Related papers (2024-02-18T05:39:00Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
We introduce MixMIL, a framework integrating Generalized Linear Mixed Models (GLMM) and Multiple Instance Learning (MIL)
Our empirical results reveal that MixMIL outperforms existing MIL models in single-cell datasets.
arXiv Detail & Related papers (2023-11-04T16:42:42Z) - Epigenomic language models powered by Cerebras [0.0]
Epigenomic BERT (or EBERT) learns representations based on both DNA sequence and paired epigenetic state inputs.
We show EBERT's transfer learning potential by demonstrating strong performance on a cell type-specific transcription factor binding prediction task.
Our fine-tuned model exceeds state of the art performance on 4 of 13 evaluation datasets from ENCODE-DREAM benchmarks and earns an overall rank of 3rd on the challenge leaderboard.
arXiv Detail & Related papers (2021-12-14T17:23:42Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.