論文の概要: Unlocking the Hidden Treasures: Enhancing Recommendations with Unlabeled Data
- arxiv url: http://arxiv.org/abs/2412.18170v1
- Date: Tue, 24 Dec 2024 05:07:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:51:24.706607
- Title: Unlocking the Hidden Treasures: Enhancing Recommendations with Unlabeled Data
- Title(参考訳): 隠された宝物を解錠する - ラベルなしデータによる勧告の強化
- Authors: Yuhan Zhao, Rui Chen, Qilong Han, Hongtao Song, Li Chen,
- Abstract要約: コラボレーティブ・フィルタリング(CF)はレコメンダ・システムの基盤となっている。
ニュートラル・ニュートラル・ネガティブ(PNN)学習パラダイムを新たに導入する。
PNNは複雑なユーザの好みを学習するための有望なソリューションを提供する。
- 参考スコア(独自算出の注目度): 12.53644929739924
- License:
- Abstract: Collaborative filtering (CF) stands as a cornerstone in recommender systems, yet effectively leveraging the massive unlabeled data presents a significant challenge. Current research focuses on addressing the challenge of unlabeled data by extracting a subset that closely approximates negative samples. Regrettably, the remaining data are overlooked, failing to fully integrate this valuable information into the construction of user preferences. To address this gap, we introduce a novel positive-neutral-negative (PNN) learning paradigm. PNN introduces a neutral class, encompassing intricate items that are challenging to categorize directly as positive or negative samples. By training a model based on this triple-wise partial ranking, PNN offers a promising solution to learning complex user preferences. Through theoretical analysis, we connect PNN to one-way partial AUC (OPAUC) to validate its efficacy. Implementing the PNN paradigm is, however, technically challenging because: (1) it is difficult to classify unlabeled data into neutral or negative in the absence of supervised signals; (2) there does not exist any loss function that can handle set-level triple-wise ranking relationships. To address these challenges, we propose a semi-supervised learning method coupled with a user-aware attention model for knowledge acquisition and classification refinement. Additionally, a novel loss function with a two-step centroid ranking approach enables handling set-level rankings. Extensive experiments on four real-world datasets demonstrate that, when combined with PNN, a wide range of representative CF models can consistently and significantly boost their performance. Even with a simple matrix factorization, PNN can achieve comparable performance to sophisticated graph neutral networks.
- Abstract(参考訳): コラボレーティブ・フィルタリング(CF)はレコメンダシステムの基盤となっているが、大量のラベルのないデータを効果的に活用することは大きな課題である。
現在の研究では、負のサンプルを近似したサブセットを抽出することで、ラベルなしデータの課題に対処することに焦点を当てている。
確実に、残りのデータは見過ごされ、この貴重な情報をユーザー好みの構築に完全に統合することができない。
このギャップに対処するために、我々は新しい正中性学習パラダイム(PNN)を導入する。
PNNは、正または負のサンプルとして直接分類することが難しい複雑な項目を含む中立クラスを導入している。
この3つの部分的なランキングに基づいてモデルをトレーニングすることにより、PNNは複雑なユーザの好みを学習するための有望なソリューションを提供する。
理論的解析により,PNNを一方的部分的AUC(OPAUC)に接続し,その有効性を検証する。
PNNパラダイムの実装は,(1)教師付き信号がない場合,ラベルなしデータを中立あるいは負に分類することは困難であり,(2)設定レベル3次ランキング関係を扱える損失関数は存在しないため,技術的に難しい。
これらの課題に対処するために,知識獲得と分類改善のためのユーザ認識型注意モデルと組み合わせた半教師付き学習手法を提案する。
さらに、2段階のセントロイドランキングアプローチによる新しい損失関数は、セットレベルランキングの処理を可能にする。
4つの実世界のデータセットに対する大規模な実験は、PNNと組み合わせることで、広範囲のCFモデルが一貫して、そのパフォーマンスを大幅に向上できることを示した。
単純な行列分解であっても、PNNは洗練されたグラフ中立ネットワークに匹敵する性能を達成できる。
関連論文リスト
- Supervised Gradual Machine Learning for Aspect Category Detection [0.9857683394266679]
アスペクトカテゴリー検出(ACD)は、あるレビュー文の中で暗黙的かつ明示的な側面を識別することを目的としている。
本稿では,Deep Neural Networks (DNN) と Gradual Machine Learning (GML) を教師付き環境で組み合わせることで,ACDタスクに取り組む新しい手法を提案する。
論文 参考訳(メタデータ) (2024-04-08T07:21:46Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Mutual Information Learned Classifiers: an Information-theoretic
Viewpoint of Training Deep Learning Classification Systems [9.660129425150926]
クロスエントロピー損失は、重度のオーバーフィッティング動作を示すモデルを見つけるのに容易である。
本稿では,既存のDNN分類器のクロスエントロピー損失最小化が,基礎となるデータ分布の条件エントロピーを本質的に学習することを証明する。
ラベルと入力の相互情報を学習することで、DNN分類器を訓練する相互情報学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-03T15:09:19Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
グラフニューラルネットワーク(GNN)ベースの手法は、レコメンダシステムの分野を飽和させた。
我々は,GNNの学習を支援するために,グラフ上で個別の公平性を促進させる既存手法を拡張した。
本研究では,局所ニュアンスが表現学習における公平化促進の過程を導くことによって,ミニバッチトレーニングが個人の公正化を促進することを示す。
論文 参考訳(メタデータ) (2022-09-08T16:20:25Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
我々は、WSLRecと呼ばれる新しいモデルに依存しないトレーニング手法を提案し、3段階のフレームワーク(事前学習、トップ$k$マイニング、本質的、微調整)を採用する。
WSLRec は、BR や ItemCF のようなモデルフリーメソッドから、余分な弱い監督のモデルを事前訓練することで、不完全性の問題を解決すると同時に、最上位の$k のマイニングを活用して、微調整のための弱い監督の信頼性の高いユーザ・イテム関連を検査することで、不正確な問題を解消する。
論文 参考訳(メタデータ) (2022-02-28T08:55:12Z) - Verification-Aided Deep Ensemble Selection [4.290931412096984]
ディープニューラルネットワーク(DNN)は、様々な複雑なタスクを実現するための選択技術となっている。
正しく分類された入力に対する知覚できない摂動でさえ、DNNによる誤分類につながる可能性がある。
本稿では,同時エラーの少ないアンサンブル構成を同定するための方法論を考案する。
論文 参考訳(メタデータ) (2022-02-08T14:36:29Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
そこで本研究では,モデル性能を向上させるために,未ラベルの点群をトレーニングに採用するための半教師付き点群セマンティックセマンティックセマンティックセマンティクスを提案する。
近年の自己監督型タスクのコントラスト損失に触発されて,特徴表現とモデル一般化能力を高めるためのガイド付きポイントコントラスト損失を提案する。
論文 参考訳(メタデータ) (2021-10-15T16:38:54Z) - Unsupervised Learning of Debiased Representations with Pseudo-Attributes [85.5691102676175]
教師なし方式で,単純かつ効果的な脱バイアス手法を提案する。
特徴埋め込み空間上でクラスタリングを行い、クラスタリング結果を利用して疑似属性を識別する。
次に,非偏り表現を学習するために,クラスタベースの新しい重み付け手法を用いる。
論文 参考訳(メタデータ) (2021-08-06T05:20:46Z) - BCFNet: A Balanced Collaborative Filtering Network with Attention
Mechanism [106.43103176833371]
協調フィルタリング(CF)ベースの推奨方法が広く研究されている。
BCFNet(Balanced Collaborative Filtering Network)という新しい推薦モデルを提案する。
さらに注意機構は、暗黙のフィードバックの中で隠れた情報をよりよく捉え、ニューラルネットワークの学習能力を強化するように設計されている。
論文 参考訳(メタデータ) (2021-03-10T14:59:23Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
本研究では, 実数値から, 最終予測分布上のバイナリネットワークへの誘導型学習パラダイムを提案する。
提案手法は,bnn上で5.515%の絶対利得で,単純なコントラスト学習ベースラインを向上できる。
提案手法は、単純なコントラスト学習ベースラインよりも大幅に改善され、多くの主流教師付きBNN手法に匹敵する。
論文 参考訳(メタデータ) (2021-02-17T18:59:28Z) - Deep Active Learning for Biased Datasets via Fisher Kernel
Self-Supervision [5.352699766206807]
アクティブラーニング(AL)は、データ要求型ディープニューラルネットワーク(DNN)のラベル付け作業を最小化する
自己教師型フィッシャーカーネル(FK)を用いた特徴密度マッチングのための低複雑さ手法を提案する。
本手法は,MNIST,SVHN,ImageNetの分類において,処理の1/10しか必要とせず,最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-01T03:56:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。