Accelerating AIGC Services with Latent Action Diffusion Scheduling in Edge Networks
- URL: http://arxiv.org/abs/2412.18212v1
- Date: Tue, 24 Dec 2024 06:40:13 GMT
- Title: Accelerating AIGC Services with Latent Action Diffusion Scheduling in Edge Networks
- Authors: Changfu Xu, Jianxiong Guo, Wanyu Lin, Haodong Zou, Wentao Fan, Tian Wang, Xiaowen Chu, Jiannong Cao,
- Abstract summary: Current AIGC models primarily focus on content quality within a centralized framework, resulting in a high service delay and negative user experiences.
We propose LAD-TS, a novel Latent Action Diffusion-based Task Scheduling method that orchestrates multiple edge servers for expedited AIGC services.
We also develop DEdgeAI, a prototype edge system with a refined AIGC model deployment to implement and evaluate our LAD-TS method.
- Score: 27.961536719427205
- License:
- Abstract: Artificial Intelligence Generated Content (AIGC) has gained significant popularity for creating diverse content. Current AIGC models primarily focus on content quality within a centralized framework, resulting in a high service delay and negative user experiences. However, not only does the workload of an AIGC task depend on the AIGC model's complexity rather than the amount of data, but the large model and its multi-layer encoder structure also result in a huge demand for computational and memory resources. These unique characteristics pose new challenges in its modeling, deployment, and scheduling at edge networks. Thus, we model an offloading problem among edges for providing real AIGC services and propose LAD-TS, a novel Latent Action Diffusion-based Task Scheduling method that orchestrates multiple edge servers for expedited AIGC services. The LAD-TS generates a near-optimal offloading decision by leveraging the diffusion model's conditional generation capability and the reinforcement learning's environment interaction ability, thereby minimizing the service delays under multiple resource constraints. Meanwhile, a latent action diffusion strategy is designed to guide decision generation by utilizing historical action probability, enabling rapid achievement of near-optimal decisions. Furthermore, we develop DEdgeAI, a prototype edge system with a refined AIGC model deployment to implement and evaluate our LAD-TS method. DEdgeAI provides a real AIGC service for users, demonstrating up to 29.18% shorter service delays than the current five representative AIGC platforms. We release our open-source code at https://github.com/ChangfuXu/DEdgeAI/.
Related papers
- Intelligent Mobile AI-Generated Content Services via Interactive Prompt Engineering and Dynamic Service Provisioning [55.641299901038316]
AI-generated content can organize collaborative Mobile AIGC Service Providers (MASPs) at network edges to provide ubiquitous and customized content for resource-constrained users.
Such a paradigm faces two significant challenges: 1) raw prompts often lead to poor generation quality due to users' lack of experience with specific AIGC models, and 2) static service provisioning fails to efficiently utilize computational and communication resources.
We develop an interactive prompt engineering mechanism that leverages a Large Language Model (LLM) to generate customized prompt corpora and employs Inverse Reinforcement Learning (IRL) for policy imitation.
arXiv Detail & Related papers (2025-02-17T03:05:20Z) - Two-Timescale Model Caching and Resource Allocation for Edge-Enabled AI-Generated Content Services [55.0337199834612]
Generative AI (GenAI) has emerged as a transformative technology, enabling customized and personalized AI-generated content (AIGC) services.
These services require executing GenAI models with billions of parameters, posing significant obstacles to resource-limited wireless edge.
We introduce the formulation of joint model caching and resource allocation for AIGC services to balance a trade-off between AIGC quality and latency metrics.
arXiv Detail & Related papers (2024-11-03T07:01:13Z) - Resource-Efficient Generative AI Model Deployment in Mobile Edge Networks [15.958822667638405]
The scarcity of available resources on the edge pose significant challenges in deploying generative AI models.
We present a collaborative edge-cloud framework aiming to properly manage generative AI model deployment on the edge.
arXiv Detail & Related papers (2024-09-09T03:17:28Z) - Multi-Agent RL-Based Industrial AIGC Service Offloading over Wireless Edge Networks [19.518346220904732]
We propose a generative model-driven industrial AIGC collaborative edge learning framework.
This framework aims to facilitate efficient few-shot learning by leveraging realistic sample synthesis and edge-based optimization capabilities.
arXiv Detail & Related papers (2024-05-05T15:31:47Z) - Offloading and Quality Control for AI Generated Content Services in 6G Mobile Edge Computing Networks [18.723955271182007]
This paper proposes a joint optimization algorithm for offloading decisions, computation time, and diffusion steps of the diffusion models in the reverse diffusion stage.
Experimental results conclusively demonstrate that the proposed algorithm achieves superior joint optimization performance compared to the baselines.
arXiv Detail & Related papers (2023-12-11T08:36:27Z) - LAMBO: Large AI Model Empowered Edge Intelligence [71.56135386994119]
Next-generation edge intelligence is anticipated to benefit various applications via offloading techniques.
Traditional offloading architectures face several issues, including heterogeneous constraints, partial perception, uncertain generalization, and lack of tractability.
We propose a Large AI Model-Based Offloading (LAMBO) framework with over one billion parameters for solving these problems.
arXiv Detail & Related papers (2023-08-29T07:25:42Z) - Federated Learning-Empowered AI-Generated Content in Wireless Networks [58.48381827268331]
Federated learning (FL) can be leveraged to improve learning efficiency and achieve privacy protection for AIGC.
We present FL-based techniques for empowering AIGC, and aim to enable users to generate diverse, personalized, and high-quality content.
arXiv Detail & Related papers (2023-07-14T04:13:11Z) - Guiding AI-Generated Digital Content with Wireless Perception [69.51950037942518]
We introduce an integration of wireless perception with AI-generated content (AIGC) to improve the quality of digital content production.
The framework employs a novel multi-scale perception technology to read user's posture, which is difficult to describe accurately in words, and transmits it to the AIGC model as skeleton images.
Since the production process imposes the user's posture as a constraint on the AIGC model, it makes the generated content more aligned with the user's requirements.
arXiv Detail & Related papers (2023-03-26T04:39:03Z) - Enabling AI-Generated Content (AIGC) Services in Wireless Edge Networks [68.00382171900975]
In wireless edge networks, the transmission of incorrectly generated content may unnecessarily consume network resources.
We present the AIGC-as-a-service concept and discuss the challenges in deploying A at the edge networks.
We propose a deep reinforcement learning-enabled algorithm for optimal ASP selection.
arXiv Detail & Related papers (2023-01-09T09:30:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.