SDM-Car: A Dataset for Small and Dim Moving Vehicles Detection in Satellite Videos
- URL: http://arxiv.org/abs/2412.18214v1
- Date: Tue, 24 Dec 2024 06:43:27 GMT
- Title: SDM-Car: A Dataset for Small and Dim Moving Vehicles Detection in Satellite Videos
- Authors: Zhen Zhang, Tao Peng, Liang Liao, Jing Xiao, Mi Wang,
- Abstract summary: We build a textbfSmall and textbfDim textbfMoving Cars dataset with a multitude of annotations for dim vehicles in satellite videos.
We propose a method based on image enhancement and attention mechanisms to improve the detection accuracy of dim vehicles.
- Score: 21.07461123197859
- License:
- Abstract: Vehicle detection and tracking in satellite video is essential in remote sensing (RS) applications. However, upon the statistical analysis of existing datasets, we find that the dim vehicles with low radiation intensity and limited contrast against the background are rarely annotated, which leads to the poor effect of existing approaches in detecting moving vehicles under low radiation conditions. In this paper, we address the challenge by building a \textbf{S}mall and \textbf{D}im \textbf{M}oving Cars (SDM-Car) dataset with a multitude of annotations for dim vehicles in satellite videos, which is collected by the Luojia 3-01 satellite and comprises 99 high-quality videos. Furthermore, we propose a method based on image enhancement and attention mechanisms to improve the detection accuracy of dim vehicles, serving as a benchmark for evaluating the dataset. Finally, we assess the performance of several representative methods on SDM-Car and present insightful findings. The dataset is openly available at https://github.com/TanedaM/SDM-Car.
Related papers
- Vehicle Perception from Satellite [54.07157185000604]
The dataset is constructed based on 12 satellite videos and 14 synthetic videos recorded from GTA-V.
It supports several tasks, including tiny object detection, counting and density estimation.
128,801 vehicles are annotated totally, and the number of vehicles in each image varies from 0 to 101.
arXiv Detail & Related papers (2024-02-01T15:59:16Z) - G-MEMP: Gaze-Enhanced Multimodal Ego-Motion Prediction in Driving [71.9040410238973]
We focus on inferring the ego trajectory of a driver's vehicle using their gaze data.
Next, we develop G-MEMP, a novel multimodal ego-trajectory prediction network that combines GPS and video input with gaze data.
The results show that G-MEMP significantly outperforms state-of-the-art methods in both benchmarks.
arXiv Detail & Related papers (2023-12-13T23:06:30Z) - SKoPe3D: A Synthetic Dataset for Vehicle Keypoint Perception in 3D from
Traffic Monitoring Cameras [26.457695296042903]
We propose SKoPe3D, a unique synthetic vehicle keypoint dataset from a roadside perspective.
SKoPe3D contains over 150k vehicle instances and 4.9 million keypoints.
Our experiments highlight the dataset's applicability and the potential for knowledge transfer between synthetic and real-world data.
arXiv Detail & Related papers (2023-09-04T02:57:30Z) - Robust and Fast Vehicle Detection using Augmented Confidence Map [10.261351772602543]
We introduce the concept of augmentation which highlights the region of interest containing the vehicles.
The output of MR-MSER is supplied to fast CNN to generate a confidence map.
Unlike existing models that implement complicated models for vehicle detection, we explore the combination of a rough set and fuzzy-based models.
arXiv Detail & Related papers (2023-04-27T18:41:16Z) - Towards Multimodal Multitask Scene Understanding Models for Indoor
Mobile Agents [49.904531485843464]
In this paper, we discuss the main challenge: insufficient, or even no, labeled data for real-world indoor environments.
We describe MMISM (Multi-modality input Multi-task output Indoor Scene understanding Model) to tackle the above challenges.
MMISM considers RGB images as well as sparse Lidar points as inputs and 3D object detection, depth completion, human pose estimation, and semantic segmentation as output tasks.
We show that MMISM performs on par or even better than single-task models.
arXiv Detail & Related papers (2022-09-27T04:49:19Z) - Video-based Smoky Vehicle Detection with A Coarse-to-Fine Framework [20.74110691914317]
We introduce a real-world large-scale smoky vehicle dataset with 75,000 annotated smoky vehicle images.
We also build a smoky vehicle video dataset including 163 long videos with segment-level annotations.
We present a new Coarse-to-fine Deep Smoky vehicle detection framework for efficient smoky vehicle detection.
arXiv Detail & Related papers (2022-07-08T06:42:45Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - Detecting and Tracking Small and Dense Moving Objects in Satellite
Videos: A Benchmark [30.078513715446196]
We build a large-scale satellite video dataset with rich annotations for the task of moving object detection and tracking.
This dataset is collected by the Jilin-1 satellite constellation.
We establish the first public benchmark for moving object detection and tracking in satellite videos.
arXiv Detail & Related papers (2021-11-25T08:01:41Z) - SoDA: Multi-Object Tracking with Soft Data Association [75.39833486073597]
Multi-object tracking (MOT) is a prerequisite for a safe deployment of self-driving cars.
We propose a novel approach to MOT that uses attention to compute track embeddings that encode dependencies between observed objects.
arXiv Detail & Related papers (2020-08-18T03:40:25Z) - High-Precision Digital Traffic Recording with Multi-LiDAR Infrastructure
Sensor Setups [0.0]
We investigate the impact of fused LiDAR point clouds compared to single LiDAR point clouds.
The evaluation of the extracted trajectories shows that a fused infrastructure approach significantly increases the tracking results and reaches accuracies within a few centimeters.
arXiv Detail & Related papers (2020-06-22T10:57:52Z) - Drone-based RGB-Infrared Cross-Modality Vehicle Detection via
Uncertainty-Aware Learning [59.19469551774703]
Drone-based vehicle detection aims at finding the vehicle locations and categories in an aerial image.
We construct a large-scale drone-based RGB-Infrared vehicle detection dataset, termed DroneVehicle.
Our DroneVehicle collects 28, 439 RGB-Infrared image pairs, covering urban roads, residential areas, parking lots, and other scenarios from day to night.
arXiv Detail & Related papers (2020-03-05T05:29:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.