Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment
- URL: http://arxiv.org/abs/2412.18230v1
- Date: Tue, 24 Dec 2024 07:28:10 GMT
- Title: Efficient Detection Framework Adaptation for Edge Computing: A Plug-and-play Neural Network Toolbox Enabling Edge Deployment
- Authors: Jiaqi Wu, Shihao Zhang, Simin Chen, Lixu Wang, Zehua Wang, Wei Chen, Fangyuan He, Zijian Tian, F. Richard Yu, Victor C. M. Leung,
- Abstract summary: Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios.
Existing edge detection methods face challenges: difficulty balancing detection precision with lightweight models, limited adaptability, and insufficient real-world validation.
We propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments.
- Score: 59.61554561979589
- License:
- Abstract: Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios. However, existing edge detection methods face challenges: 1) difficulty balancing detection precision with lightweight models, 2) limited adaptability of generalized deployment designs, and 3) insufficient real-world validation. To address these issues, we propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments. Specifically, we introduce a lightweight Reparameterized Dynamic Convolutional Network (Rep-DConvNet) featuring weighted multi-shape convolutional branches to enhance detection performance. Additionally, we design a Sparse Cross-Attention (SC-A) network with a localized-mapping-assisted self-attention mechanism, enabling a well-crafted joint module for adaptive feature transfer. For real-world applications, we incorporate an Efficient Head into the YOLO framework to accelerate edge model optimization. To demonstrate practical impact, we identify a gap in helmet detection -- overlooking band fastening, a critical safety factor -- and create the Helmet Band Detection Dataset (HBDD). Using ED-TOOLBOX-optimized models, we address this real-world task. Extensive experiments validate the effectiveness of ED-TOOLBOX, with edge detection models outperforming six state-of-the-art methods in visual surveillance simulations, achieving real-time and accurate performance. These results highlight ED-TOOLBOX as a superior solution for edge object detection.
Related papers
- RE-POSE: Synergizing Reinforcement Learning-Based Partitioning and Offloading for Edge Object Detection [3.2805151494259563]
Real-time object detection on edge devices presents significant challenges due to their limited computational resources and the high demands of deep neural network (DNN)-based detection models.
This paper introduces RE-POSE, a framework designed to optimize the accuracy-latency trade-off in resource-constrained edge environments.
arXiv Detail & Related papers (2025-01-16T10:56:45Z) - Efficient Oriented Object Detection with Enhanced Small Object Recognition in Aerial Images [2.9138705529771123]
We present a novel enhancement to the YOLOv8 model, tailored for oriented object detection tasks.
Our model features a wavelet transform-based C2f module for capturing associative features and an Adaptive Scale Feature Pyramid (ASFP) module that leverages P2 layer details.
Our approach provides a more efficient architectural design than DecoupleNet, which has 23.3M parameters, all while maintaining detection accuracy.
arXiv Detail & Related papers (2024-12-17T05:45:48Z) - Highly Efficient and Unsupervised Framework for Moving Object Detection in Satellite Videos [0.2023650687546586]
We propose a highly efficient unsupervised framework for SVMOD.
We show that our method can not only process 9 frames per second on 1024x images but also achieve foreground-art performance.
arXiv Detail & Related papers (2024-11-24T16:06:42Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Multitask AET with Orthogonal Tangent Regularity for Dark Object
Detection [84.52197307286681]
We propose a novel multitask auto encoding transformation (MAET) model to enhance object detection in a dark environment.
In a self-supervision manner, the MAET learns the intrinsic visual structure by encoding and decoding the realistic illumination-degrading transformation.
We have achieved the state-of-the-art performance using synthetic and real-world datasets.
arXiv Detail & Related papers (2022-05-06T16:27:14Z) - End-to-End Instance Edge Detection [29.650295133113183]
Edge detection has long been an important problem in the field of computer vision.
Previous works have explored category-agnostic or category-aware edge detection.
In this paper, we explore edge detection in the context of object instances.
arXiv Detail & Related papers (2022-04-06T15:32:21Z) - Enhancing Object Detection for Autonomous Driving by Optimizing Anchor
Generation and Addressing Class Imbalance [0.0]
This study presents an enhanced 2D object detector based on Faster R-CNN that is better suited for the context of autonomous vehicles.
The proposed modifications over the Faster R-CNN do not increase computational cost and can easily be extended to optimize other anchor-based detection frameworks.
arXiv Detail & Related papers (2021-04-08T16:58:31Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
We propose a method for effective and efficient multispectral fusion of the two modalities in an adapted single-stage anchor-free base architecture.
We aim at learning pedestrian representations based on object center and scale rather than direct bounding box predictions.
Results show our method's effectiveness in detecting small-scaled pedestrians.
arXiv Detail & Related papers (2020-08-19T13:13:01Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.