AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection
- URL: http://arxiv.org/abs/2505.15184v1
- Date: Wed, 21 May 2025 07:02:05 GMT
- Title: AuxDet: Auxiliary Metadata Matters for Omni-Domain Infrared Small Target Detection
- Authors: Yangting Shi, Renjie He, Le Hui, Xiang Li, Jian Yang, Ming-Ming Cheng, Yimian Dai,
- Abstract summary: We propose a novel IRSTD framework that reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization.<n>AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy.
- Score: 58.67129770371016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Omni-domain infrared small target detection (IRSTD) poses formidable challenges, as a single model must seamlessly adapt to diverse imaging systems, varying resolutions, and multiple spectral bands simultaneously. Current approaches predominantly rely on visual-only modeling paradigms that not only struggle with complex background interference and inherently scarce target features, but also exhibit limited generalization capabilities across complex omni-scene environments where significant domain shifts and appearance variations occur. In this work, we reveal a critical oversight in existing paradigms: the neglect of readily available auxiliary metadata describing imaging parameters and acquisition conditions, such as spectral bands, sensor platforms, resolution, and observation perspectives. To address this limitation, we propose the Auxiliary Metadata Driven Infrared Small Target Detector (AuxDet), a novel multi-modal framework that fundamentally reimagines the IRSTD paradigm by incorporating textual metadata for scene-aware optimization. Through a high-dimensional fusion module based on multi-layer perceptrons (MLPs), AuxDet dynamically integrates metadata semantics with visual features, guiding adaptive representation learning for each individual sample. Additionally, we design a lightweight prior-initialized enhancement module using 1D convolutional blocks to further refine fused features and recover fine-grained target cues. Extensive experiments on the challenging WideIRSTD-Full benchmark demonstrate that AuxDet consistently outperforms state-of-the-art methods, validating the critical role of auxiliary information in improving robustness and accuracy in omni-domain IRSTD tasks. Code is available at https://github.com/GrokCV/AuxDet.
Related papers
- MGDFIS: Multi-scale Global-detail Feature Integration Strategy for Small Object Detection [10.135137525886098]
Small object detection in UAV imagery is crucial for applications such as search-and-rescue, traffic monitoring, and environmental surveillance.<n>Existing multi-scale fusion methods help, but add computational burden and blur fine details.<n>We propose a unified fusion framework that tightly couples global context with local detail to boost detection performance.
arXiv Detail & Related papers (2025-06-15T02:54:25Z) - CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
Spectral imaging offers promising applications across diverse domains, including medicine and urban scene understanding.<n> variability in channel dimensionality and captured wavelengths among spectral cameras impede the development of AI-driven methodologies.<n>We introduce $textbfCARL$, a model for $textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$ across RGB, multispectral, and hyperspectral imaging modalities.
arXiv Detail & Related papers (2025-04-27T13:06:40Z) - XPoint: A Self-Supervised Visual-State-Space based Architecture for Multispectral Image Registration [2.7036595757881323]
XPoint is a self-supervised, modular image-matching framework for adaptive training and fine-tuning on aligned multispectral datasets.
XPoint employs modularity and self-supervision to allow for the adjustment of elements such as the base detector.
XPoint consistently outperforms or matches state-ofthe-art methods in feature matching and image registration tasks.
arXiv Detail & Related papers (2024-11-11T23:12:08Z) - OCR is All you need: Importing Multi-Modality into Image-based Defect Detection System [7.1083241462091165]
We introduce an external modality-guided data mining framework, primarily rooted in optical character recognition (OCR), to extract statistical features from images.
A key aspect of our approach is the alignment of external modality features, extracted using a single modality-aware model, with image features encoded by a convolutional neural network.
Our methodology considerably boosts the recall rate of the defect detection model and maintains high robustness even in challenging scenarios.
arXiv Detail & Related papers (2024-03-18T07:41:39Z) - DAMSDet: Dynamic Adaptive Multispectral Detection Transformer with
Competitive Query Selection and Adaptive Feature Fusion [82.2425759608975]
Infrared-visible object detection aims to achieve robust even full-day object detection by fusing the complementary information of infrared and visible images.
We propose a Dynamic Adaptive Multispectral Detection Transformer (DAMSDet) to address these two challenges.
Experiments on four public datasets demonstrate significant improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2024-03-01T07:03:27Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - Multimodal Transformer Using Cross-Channel attention for Object Detection in Remote Sensing Images [1.662438436885552]
Multi-modal fusion has been determined to enhance the accuracy by fusing data from multiple modalities.
We propose a novel multi-modal fusion strategy for mapping relationships between different channels at the early stage.
By addressing fusion in the early stage, as opposed to mid or late-stage methods, our method achieves competitive and even superior performance compared to existing techniques.
arXiv Detail & Related papers (2023-10-21T00:56:11Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
We construct a transformer-based framework for multi-modal manipulation detection and grounding tasks.
Our framework simultaneously explores modality-specific features while preserving the capability for multi-modal alignment.
We propose an implicit manipulation query (IMQ) that adaptively aggregates global contextual cues within each modality.
arXiv Detail & Related papers (2023-09-22T06:55:41Z) - Unified Frequency-Assisted Transformer Framework for Detecting and
Grounding Multi-Modal Manipulation [109.1912721224697]
We present the Unified Frequency-Assisted transFormer framework, named UFAFormer, to address the DGM4 problem.
By leveraging the discrete wavelet transform, we decompose images into several frequency sub-bands, capturing rich face forgery artifacts.
Our proposed frequency encoder, incorporating intra-band and inter-band self-attentions, explicitly aggregates forgery features within and across diverse sub-bands.
arXiv Detail & Related papers (2023-09-18T11:06:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.