論文の概要: Towards Modality Generalization: A Benchmark and Prospective Analysis
- arxiv url: http://arxiv.org/abs/2412.18277v1
- Date: Tue, 24 Dec 2024 08:38:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:56:06.668530
- Title: Towards Modality Generalization: A Benchmark and Prospective Analysis
- Title(参考訳): モダリティの一般化に向けて:ベンチマークと展望分析
- Authors: Xiaohao Liu, Xiaobo Xia, Zhuo Huang, Tat-Seng Chua,
- Abstract要約: 本稿では,モダリティ・ジェネリゼーション(MG)について述べる。
マルチモーダルアルゴリズムを特徴とする包括的ベンチマークを提案し,一般化に着目した既存手法を適用した。
私たちの研究は、堅牢で適応可能なマルチモーダルモデルを進化させる基盤を提供し、現実的なシナリオで目に見えないモダリティを扱えるようにします。
- 参考スコア(独自算出の注目度): 56.84045461854789
- License:
- Abstract: Multi-modal learning has achieved remarkable success by integrating information from various modalities, achieving superior performance in tasks like recognition and retrieval compared to uni-modal approaches. However, real-world scenarios often present novel modalities that are unseen during training due to resource and privacy constraints, a challenge current methods struggle to address. This paper introduces Modality Generalization (MG), which focuses on enabling models to generalize to unseen modalities. We define two cases: weak MG, where both seen and unseen modalities can be mapped into a joint embedding space via existing perceptors, and strong MG, where no such mappings exist. To facilitate progress, we propose a comprehensive benchmark featuring multi-modal algorithms and adapt existing methods that focus on generalization. Extensive experiments highlight the complexity of MG, exposing the limitations of existing methods and identifying key directions for future research. Our work provides a foundation for advancing robust and adaptable multi-modal models, enabling them to handle unseen modalities in realistic scenarios.
- Abstract(参考訳): マルチモーダル学習は、様々なモーダルからの情報を統合し、ユニモーダルアプローチと比較して、認識や検索といったタスクにおいて優れたパフォーマンスを達成することで、目覚ましい成功を収めた。
しかし、現実のシナリオは、リソースやプライバシの制約によってトレーニング中に見つからない新しいモダリティをしばしば提示する。
本稿では,モダリティ・ジェネリゼーション(MG)について述べる。
我々は2つのケースを定義する:弱MG、可視と非可視の両方のモダリティを既存の知覚子を通して結合埋め込み空間にマッピングできる、強いMG、そのような写像は存在しない。
そこで本研究では,マルチモーダルアルゴリズムを特徴とする包括的ベンチマークを提案し,一般化に着目した既存手法を適用した。
大規模な実験はMGの複雑さを強調し、既存の方法の限界を明らかにし、将来の研究の鍵となる方向を特定する。
私たちの研究は、堅牢で適応可能なマルチモーダルモデルを進化させる基盤を提供し、現実的なシナリオで目に見えないモダリティを扱えるようにします。
関連論文リスト
- Advances in Multimodal Adaptation and Generalization: From Traditional Approaches to Foundation Models [43.5468667825864]
この調査は、従来のアプローチから基礎モデルへの進歩に関する、初めての包括的なレビューを提供する。
1)マルチモーダルドメイン適応,(2)マルチモーダルテスト時間適応,(3)マルチモーダルドメイン一般化,(4)マルチモーダルファンデーションモデルの助けを借りたドメイン適応と一般化,(5)マルチモーダルファンデーションモデルの適応。
論文 参考訳(メタデータ) (2025-01-30T18:59:36Z) - Cross-Modal Few-Shot Learning: a Generative Transfer Learning Framework [58.362064122489166]
本稿では,複数モーダルからインスタンスを識別するクロスモーダルなFew-Shot Learningタスクを提案する。
本稿では,1つの段階からなる生成的転帰学習フレームワークを提案する。1つは豊富な一助データに対する学習を伴い,もう1つは新しいデータに適応するための転帰学習に焦点を当てる。
以上の結果から,GTLは4つの異なるマルチモーダルデータセット間の最先端手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-14T16:09:38Z) - Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
実世界のシナリオでは、完全なマルチモーダルデータを一貫して取得することは重大な課題である。
これはしばしば、特定のモダリティのデータが欠落しているモダリティの問題につながる。
自己教師型共同埋め込み学習手法を用いて, パラメータ効率のよい未学習モデルの微調整を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T14:44:25Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - SimMMDG: A Simple and Effective Framework for Multi-modal Domain
Generalization [13.456240733175767]
SimMMDGは、マルチモーダルシナリオにおけるドメインの一般化を実現する上での課題を克服するためのフレームワークである。
我々は,共同性を確保し,距離制約を課すために,モダリティ共有特徴に対する教師付きコントラスト学習を採用する。
本研究では,EPIC-KitchensデータセットとHuman-Animal-CartoonデータセットのマルチモーダルDGにおいて,理論的に支持され,高い性能を実現している。
論文 参考訳(メタデータ) (2023-10-30T17:58:09Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - MMG-Ego4D: Multi-Modal Generalization in Egocentric Action Recognition [73.80088682784587]
MMG(Multimodal Generalization)は,特定のモダリティのデータに制限がある場合,あるいは完全に欠落する場合に,システムがどのように一般化できるかを研究することを目的としている。
MMGは2つの新しいシナリオで構成され、現実のアプリケーションにおけるセキュリティと効率の考慮をサポートするように設計されている。
新しい融合モジュールは、モダリティのドロップアウトトレーニング、コントラストベースのアライメントトレーニング、そして新しいクロスモーダル損失により、より優れた数ショット性能を実現した。
論文 参考訳(メタデータ) (2023-05-12T03:05:40Z) - Deep Multimodal Fusion for Generalizable Person Re-identification [15.250738959921872]
DMF(ディープ・マルチモーダル・フュージョン)は、個人再識別タスクの一般的なシナリオのためのディープ・マルチモーダル・フュージョン・ネットワークである。
事前学習段階における特徴表現学習を支援するために、リッチな意味知識が導入される。
実世界の分散アライメントのための事前訓練されたモデルを微調整するために、現実的なデータセットが採用されている。
論文 参考訳(メタデータ) (2022-11-02T07:42:48Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
我々は、欠落したモダリティ・イマジネーション・ネットワーク(IF-MMIN)に不変な特徴を用いることを提案する。
提案モデルは,不確実なモダリティ条件下で,すべてのベースラインを上回り,全体の感情認識性能を不変に向上することを示す。
論文 参考訳(メタデータ) (2022-10-27T12:16:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。