論文の概要: Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization
- arxiv url: http://arxiv.org/abs/2412.18279v1
- Date: Tue, 24 Dec 2024 08:39:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:55:16.132478
- Title: Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization
- Title(参考訳): 直接アドバンテージポリシー最適化による大規模言語モデルのマルチステップ推論能力の向上
- Authors: Jiacai Liu, Chaojie Wang, Chris Yuhao Liu, Liang Zeng, Rui Yan, Yiwen Sun, Yang Liu, Yahui Zhou,
- Abstract要約: ステップレベルのオフライン強化学習アルゴリズムであるDAPO(Direct Advantage Policy Optimization)を導入する。
DAPOは、各ステップにおける推論精度を予測するために批判機能を使用し、それによって高密度信号を生成して生成戦略を洗練させる。
その結果,DAPO は SFT モデルと RL モデルの両方の数学的・コード的能力を効果的に向上し,DAPO の有効性を示すことができた。
- 参考スコア(独自算出の注目度): 22.67700436936984
- License:
- Abstract: The role of reinforcement learning (RL) in enhancing the reasoning of large language models (LLMs) is becoming increasingly significant. Despite the success of RL in many scenarios, there are still many challenges in improving the reasoning of LLMs. One challenge is the sparse reward, which makes optimization difficult for RL and necessitates a large amount of data samples. Another challenge stems from the inherent instability of RL, particularly when using Actor-Critic (AC) methods to derive optimal policies, which often leads to unstable training processes. To address these issues, we introduce Direct Advantage Policy Optimization (DAPO), an novel step-level offline RL algorithm. Unlike standard alignment that rely solely outcome rewards to optimize policies (such as DPO), DAPO employs a critic function to predict the reasoning accuracy at each step, thereby generating dense signals to refine the generation strategy. Additionally, the Actor and Critic components in DAPO are trained independently, avoiding the co-training instability observed in standard AC algorithms like PPO. We train DAPO on mathematical and code query datasets and then evaluate its performance on multiple benchmarks. Our results show that DAPO can effectively enhance the mathematical and code capabilities on both SFT models and RL models, demonstrating the effectiveness of DAPO.
- Abstract(参考訳): 大規模言語モデル(LLM)の推論向上における強化学習(RL)の役割はますます重要になっている。
多くのシナリオにおいてRLの成功にもかかわらず、LLMの推論を改善する上ではまだ多くの課題がある。
1つの課題はスパース報酬であり、これはRLの最適化を難しくし、大量のデータサンプルを必要とする。
もう一つの課題は、RLの固有の不安定性、特にアクター・クリティカル(AC)法を用いて最適なポリシーを導出する場合に起因し、しばしば不安定なトレーニングプロセスにつながる。
これらの問題に対処するために、我々は、新しいステップレベルのオフラインRLアルゴリズムであるダイレクトアドバンテージポリシー最適化(DAPO)を導入する。
DPOのような)ポリシーを最適化するために結果報酬のみに依存する標準的なアライメントとは異なり、DAPOは各ステップにおける推論精度を予測するために批判関数を使用し、それによって高密度信号を生成して生成戦略を洗練させる。
さらに、DAPOのアクターと批評家のコンポーネントは独立して訓練され、PPOのような標準交流アルゴリズムで観測されるコトレーニング不安定性を回避する。
数式およびコードクエリデータセットでDAPOをトレーニングし、複数のベンチマークでその性能を評価する。
その結果,DAPO は SFT モデルと RL モデルの両方の数学的・コード的能力を効果的に向上し,DAPO の有効性を示すことができた。
関連論文リスト
- VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - Enhancing Sample Efficiency and Exploration in Reinforcement Learning through the Integration of Diffusion Models and Proximal Policy Optimization [1.631115063641726]
オフラインデータセットのための高品質な仮想トラジェクトリを生成するために拡散モデルを導入し,PPOアルゴリズムを強化するフレームワークを提案する。
RLにおける拡散モデルの可能性、特にオフラインデータセットについて検討し、オンラインRLをオフライン環境に拡張し、拡散モデルによるPPOの性能改善を実験的に検証する。
論文 参考訳(メタデータ) (2024-09-02T19:10:32Z) - Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment [58.049113055986375]
我々は、報酬モデルとポリシーをトレーニングするために、AIHF(Alignment with Integrated Human Feedback)と呼ばれる単一ステージアプローチを開発する。
提案した手法は、一般的なアライメントアルゴリズムに容易に還元し、活用できる、効率的なアルゴリズムの集合を認めている。
本研究では,LLMにおけるアライメント問題と,MuJoCoにおけるロボット制御問題を含む広範な実験により,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-11T01:20:53Z) - Scaling Laws for Reward Model Overoptimization in Direct Alignment Algorithms [50.808123629394245]
Direct Preference Optimizationのようなダイレクトアライメントアルゴリズム(DDA)は、古典的なRLHFパイプラインの代替として登場した。
この研究は、DAAに対する過度な最適化やハッキングの問題を定式化し、その成果を目標、訓練体制、モデルスケールにわたって探求する。
論文 参考訳(メタデータ) (2024-06-05T03:41:37Z) - DPO: Differential reinforcement learning with application to optimal configuration search [3.2857981869020327]
連続状態と行動空間による強化学習は、この分野における最も困難な問題の1つである。
限られたトレーニングサンプルと短いエピソードで設定を処理できる最初の微分RLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-24T03:11:12Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Secrets of RLHF in Large Language Models Part I: PPO [81.01936993929127]
大規模言語モデル (LLMs) は、人工知能の進歩のためのブループリントを定式化した。
人間のフィードバックによる強化学習(RLHF)がこの追求を支える重要な技術パラダイムとして出現する。
本稿では、RLHFの枠組みを解明し、PPOの内部構造を再評価し、PPOアルゴリズムを構成する部分が政策エージェントの訓練にどのように影響するかを考察する。
論文 参考訳(メタデータ) (2023-07-11T01:55:24Z) - Jump-Start Reinforcement Learning [68.82380421479675]
本稿では、オフラインデータやデモ、あるいは既存のポリシーを使ってRLポリシーを初期化するメタアルゴリズムを提案する。
特に,タスク解決に2つのポリシーを利用するアルゴリズムであるJump-Start Reinforcement Learning (JSRL)を提案する。
実験により、JSRLは既存の模倣と強化学習アルゴリズムを大幅に上回っていることを示す。
論文 参考訳(メタデータ) (2022-04-05T17:25:22Z) - Math Programming based Reinforcement Learning for Multi-Echelon
Inventory Management [1.9161790404101895]
強化学習は、ロボット工学、ゲーム、その他多くの分野において、かなりのブレークスルーをもたらしている。
しかし、複雑な実世界の意思決定問題におけるRLの応用は依然として限られている。
これらの特徴は、ステップアクションの問題を解くために列挙法に依存する既存のRL法において、問題を解くのをかなり難しくする。
本研究では,不確実性分布の適切に選択された離散化が,不確実性からのサンプルがごく少ない場合でも,最適なアクターポリシーに近づきうることを示す。
PARLはベースストックを44.7%、RL法を12.1%上回っている。
論文 参考訳(メタデータ) (2021-12-04T01:40:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。