論文の概要: Efficient and Context-Aware Label Propagation for Zero-/Few-Shot Training-Free Adaptation of Vision-Language Model
- arxiv url: http://arxiv.org/abs/2412.18303v1
- Date: Tue, 24 Dec 2024 09:15:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-25 15:54:57.281523
- Title: Efficient and Context-Aware Label Propagation for Zero-/Few-Shot Training-Free Adaptation of Vision-Language Model
- Title(参考訳): Zero-/Few-Shot トレーニングのための効率的かつコンテキスト対応なラベルプロパゲーション-ビジョンランゲージモデルの自由適応
- Authors: Yushu Li, Yongyi Su, Adam Goodge, Kui Jia, Xun Xu,
- Abstract要約: 視覚言語モデル(VLM)は、さまざまな下流タスクに取り組むために、トレーニング済みの大きなモデルを活用することで、機械学習に革命をもたらした。
ラベル効率適応と推論のためのグラフベースの手法を提案する。
- 参考スコア(独自算出の注目度): 41.55165760439727
- License:
- Abstract: Vision-language models (VLMs) have revolutionized machine learning by leveraging large pre-trained models to tackle various downstream tasks. Despite improvements in label, training, and data efficiency, many state-of-the-art VLMs still require task-specific hyperparameter tuning and fail to fully exploit test samples. To overcome these challenges, we propose a graph-based approach for label-efficient adaptation and inference. Our method dynamically constructs a graph over text prompts, few-shot examples, and test samples, using label propagation for inference without task-specific tuning. Unlike existing zero-shot label propagation techniques, our approach requires no additional unlabeled support set and effectively leverages the test sample manifold through dynamic graph expansion. We further introduce a context-aware feature re-weighting mechanism to improve task adaptation accuracy. Additionally, our method supports efficient graph expansion, enabling real-time inductive inference. Extensive evaluations on downstream tasks, such as fine-grained categorization and out-of-distribution generalization, demonstrate the effectiveness of our approach.
- Abstract(参考訳): 視覚言語モデル(VLM)は、さまざまな下流タスクに取り組むために、トレーニング済みの大きなモデルを活用することで、機械学習に革命をもたらした。
ラベル、トレーニング、データ効率の改善にもかかわらず、多くの最先端のVLMは依然としてタスク固有のハイパーパラメータチューニングを必要としており、テストサンプルを完全に活用することができない。
これらの課題を克服するために、ラベル効率のよい適応と推論のためのグラフベースのアプローチを提案する。
提案手法は,テキストプロンプト,少数ショット例,テストサンプルのグラフを動的に構築する。
既存のゼロショットラベル伝搬技術とは異なり、この手法では追加のラベル付きサポートセットを必要とせず、動的グラフ展開により試験サンプル多様体を効果的に活用する。
さらに,タスク適応精度を向上させるために,コンテキスト認識機能の再重み付け機構を導入する。
さらに,提案手法は効率的なグラフ展開をサポートし,リアルタイムな帰納的推論を可能にする。
細粒度分類やアウト・オブ・ディストリビューションの一般化といった下流タスクに対する広範囲な評価は,本手法の有効性を実証するものである。
関連論文リスト
- Instance-Aware Graph Prompt Learning [71.26108600288308]
本稿では,インスタンス対応グラフプロンプト学習(IA-GPL)について紹介する。
このプロセスでは、軽量アーキテクチャを使用して各インスタンスの中間プロンプトを生成する。
複数のデータセットと設定で実施された実験は、最先端のベースラインと比較して、IA-GPLの優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-11-26T18:38:38Z) - Active Learning to Guide Labeling Efforts for Question Difficulty Estimation [1.0514231683620516]
トランスフォーマーベースのニューラルネットワークは、主に教師なしの手法ではなく、教師なし学習における独立した研究によって、最先端のパフォーマンスを達成する。
この研究は、教師付きヒューマン・イン・ザ・ループアプローチであるQDEのアクティブ・ラーニングを探求することで、研究ギャップを埋める。
PowerVarianceの取得によるアクティブな学習は、トレーニングデータの10%だけをラベル付けした後、完全に教師されたモデルに近いパフォーマンスを達成することを示す実験である。
論文 参考訳(メタデータ) (2024-09-14T02:02:42Z) - Enhancing Vision-Language Few-Shot Adaptation with Negative Learning [11.545127156146368]
我々は,タスク固有の知識をより効率的に活用するための,シンプルで効果的な否定的学習手法SimNLを提案する。
そこで本研究では,雑音を緩和するために,プラグアンドプレイによる数発のインスタンス再重み付け手法を提案する。
提案したSimNLは,少数ショット学習とドメイン一般化の両タスクにおいて,既存の最先端手法よりも優れていることを確認した。
論文 参考訳(メタデータ) (2024-03-19T17:59:39Z) - LAMM: Label Alignment for Multi-Modal Prompt Learning [17.478967970736115]
我々は、下流データセットのカテゴリ埋め込みをエンドツーエンドのトレーニングによって調整できる、textbfLAMMという革新的なラベルアライメント手法を提案する。
本手法は,既存のマルチモーダル・プロンプト学習モデルの性能を大幅に向上させる。
提案手法は,他の素早いチューニング手法と比較して,連続学習の優位性を示す。
論文 参考訳(メタデータ) (2023-12-13T15:29:52Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Patch-Prompt Aligned Bayesian Prompt Tuning for Vision-Language Models [48.77653835765705]
そこでは,まず下位分布から潜在ベクトルをサンプリングし,次に軽量な生成モデルを用いてラベル固有のプロンプトを階層的に生成する。
提案手法の有効性は,少数ショット画像認識,ベース・ツー・ニュージェネリゼーション,データセット転送学習,ドメインシフトの4つのタスクで評価する。
論文 参考訳(メタデータ) (2023-03-16T06:09:15Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
プロキシタスクによる一貫性の導入は、データ駆動学習を強化することが示されている。
本稿では,光フロー推定のための新しい,効果的な整合性戦略を提案する。
論文 参考訳(メタデータ) (2022-04-14T22:58:30Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。